Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T07:28:18.707Z Has data issue: false hasContentIssue false

Computer Simulation of Cation Distribution in Dioctahedral 2:1 Layer Silicates Using IR-Data: Application to Mössbauer Spectroscopy of a Glauconite Sample

Published online by Cambridge University Press:  28 February 2024

Lydia G. Dainyak
Affiliation:
Geological Institute of the Russian Academy of Science, Moscow, Russia
V. A. Drits
Affiliation:
Geological Institute of the Russian Academy of Science, Moscow, Russia
L. M. Heifits
Affiliation:
Institute for Systems Studies of the Russian Academy of Science, Moscow, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new approach is described to computer simulate cation distribution in octahedral sheets of dioctahedral 2:1 layer silicates with vacant trans-octahedra. This approach makes use of the information on cation distribution at the one-dimensional level provided by integrated IR optical densities for the region of OH-stretching frequencies. By using this program it is possible to show that (1) the Mössbauer spectrum of glauconite B. Patom conforms to the structural model composed of celandonite-like and illite-like domains whose dimensions are limited by approximately 2 or 4 unit cells; (2) non-equivalency of “left” and “right” cis-positions (with fixed b-direction) with respect to R2+ and R3+ occupancy is a characteristic feature of a celadonite-like domain.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Besson, G., Bookin, A. S., Dainyak, L. G., Rautureau, M., Tsipursky, S. I., Tchoubar, C. and Drits, V. A., 1983 Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronite J. Appl. Cryst 16 374383 10.1107/S0021889883010651.CrossRefGoogle Scholar
Besson, G., Drits, V. A., Dainyak, L. G. and Smoliar, B. B., 1987 Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR-spectroscopy data Clay Miner 22 465478 10.1180/claymin.1987.022.4.10.CrossRefGoogle Scholar
Bookin, A. S., Dainyak, L. G. and Drits, V. A., 1978 Interpretation of the Mössbauer spectra of layer silicates on the basis of structural modelling (c) Phys. Chem. Minerals 3 5859.Google Scholar
Bowen, L. H., De Grave, E., Reid, D. A., Graham, R. C. and Edinger, S. B., 1989 Mössbauer study of a California desert celadonite and its pedagenically-related smectite Phys. Chem. Minerals 16 697703 10.1007/BF00223320.CrossRefGoogle Scholar
Cardile, C. M. and Brown, I. N. M., 1988 An 57Fe Mössbauer and X-ray diffraction study of New Zealand glauconites Clay Miner 23 1325 10.1180/claymin.1988.023.1.02.CrossRefGoogle Scholar
Dainyak, L. G. and Konta, J., 1985 Structural features of layer silicates and EFG calculations for an interpretation of their Mössbauer spectra Proc. 5th Meeting of the European Clay Groups, Prague, 1983 Prague Univerzita Karlova 4349.Google Scholar
Dainyak, L. G. and Drits, V. A., 1987 Interpretation of Mössbauer spectra of nontronite celadonite and glauconite Clays & Clay Minerals 35 363372 10.1346/CCMN.1987.0350506.CrossRefGoogle Scholar
Dainyak, L. G., Bookin, A. S. and Drits, V. A., 1984 Interpretation of Mössbauer spectra of dioctahedral Fe3+-containing 2:1 layer silicates. II. Nontronite Kristallografia 29 304311.Google Scholar
Dainyak, L. G., Bookin, A. S. and Drits, V. A., 1984 Interpretation of Mössbauer spectra of dioctahedral Fe3+-containing 2:1 layer silicates. III. Celadonite Kristallografia 29 312321.Google Scholar
Dainyak, L. G., Dainyak, B. A., Bookin, A. S. and Drits, V. A., 1984 Interpretation of the Mössbauer spectra of dioctahedral Fe3+-containing layer silicates on the basis of structural modelling Kristallografia 29 94100.Google Scholar
De Grave, E., Vandenbruwaene, J. and Elewaute, E., 1985 An 57Fe Mössbauer effect study on glauconites from different locations in Belgium and northern France Clay Miner 20 171179 10.1180/claymin.1985.020.2.02.CrossRefGoogle Scholar
Drits, V. A. and Smoliar-Zviagina, B. B., 1992 Structure prediction for micas of diverse compositions .Google Scholar
Drits, V. A., Kameneva, M. Y., Sakharov, B. A. and Dainyak, L. G., 1992 Problems in the determination of the actual structure of glauconite and related microdivided minerals Nauka Soran, Novosobirsk Inst. Geol. Geophys..Google Scholar
Herrero, C. P., Gregorkievitz, M., Sanz, J. and Serratoza, J. M., 1987 29Si MAS-NMR spectroscopy of mica-type silicates: Observed and predicted distribution of tetrahedral Al-Si Phys. Chem. Minerals 15 8490 10.1007/BF00307613.CrossRefGoogle Scholar
Johnston, J. H. and Cardile, C. M., 1987 Iron substitution in montmorillonite, illite, and glauconite by 57Fe Mössbauer spectroscopy Clays & Clay Minerals 35 170176 10.1346/CCMN.1987.0350302.CrossRefGoogle Scholar
Kameneva, M. Y., 1986 Crystal-chemical peculiarities of the glauconite group minerals .Google Scholar
Krzanowski, W. J. and Newman, A CD, 1972 Computer simulation of cation distribution in the octahedral layers of micas Mineral. Mag 38 926935 10.1180/minmag.1972.038.300.03.CrossRefGoogle Scholar
Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. and Grimmer, A. R., 1980 Structural studies of silicates by solid-state high resolution 29Si NMR J. Amer. Chem. Soc 102 48894893 10.1021/ja00535a008.CrossRefGoogle Scholar
Nikolaeva, I. V., 1977 Minerals of the glauconite group in sedimentary formations Nauka .Google Scholar
Popov, V. I., Khramov, D. A. and Lobanov, F. I., 1988 Absorber shape: The influence on the Mössbauer spectrum parameters Proc. of USSR Conference on Applied Mössbauer Spectroscopy “Volga” Moscow Moscow Physical Engineering Inst. 3233.Google Scholar
Sakharov, B. A., Besson, G., Drits, V. A., Kameneva, M. Y., Salyn, A. L. and Smoliar, B. B., 1990 X-ray study of the nature of stacking faults in the structure of glauconites Clay Miner 25 419435 10.1180/claymin.1990.025.4.02.CrossRefGoogle Scholar
Sanz, J. and Serratoza, J. M., 1984 29Si and 27A1 high-resolution MAS-NMR spectra of phyllosilicates J. Amer. Chem. Soc 106 47904793 10.1021/ja00329a024.CrossRefGoogle Scholar
Slonimskaya, M. V., Besson, G., Dainyak, L. G., Tchoubar, C. and Drits, V. A., 1986 Interpretation of the IR spectra of celadonites and glauconites in the region of OH-stretch-ing frequencies Clay Miner 21 377388 10.1180/claymin.1986.021.3.09.CrossRefGoogle Scholar
Smoliar-Zviagina, B. B., 1991 Relationships between structural parameters and chemical composition of 2:1 phyllosilicates Proc. Euroclay Conference, Dresden, 1991 3 975980.Google Scholar
Townsend, M. G., Longworth, G., Ross, C A M and Pro-vencher, R., 1987 Ferromagnetic or antiferromagnetic Fe III spin configurations in sheet silicates Phys. Chem. Minerals 15 6470 10.1007/BF00307610.CrossRefGoogle Scholar
Tsipursky, S. I. and Drits, V. A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites Clay Miner 19 177193 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
Tsipursky, S. I., Drits, V. A. and Chekin, S. S., 1978 Study of structural ordering of nontronite by means of oblique electron diffraction Izv. Akad. Nauk S.S.S.R., Ser. Geol 10 105113.Google Scholar
Tsipursky, S. I., Drits, V. A. and Plançon, A., 1985 Calculation of the intensities distribution in the oblique texture electron diffraction patterns Kristallografia 30 3844.Google Scholar
Zviagina, B. B. and Drits, V. A., 1991 Structure modelling of micas having disordered distribution of isomorphous cations Miner. Zhurnal 13 8495.Google Scholar