Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T21:28:36.709Z Has data issue: false hasContentIssue false

Compositional and Structural Variation of Sudoite from the Betic Cordillera (Spain): A TEM/AEM Study

Published online by Cambridge University Press:  01 January 2024

María Dolores Ruiz Cruz*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogáa, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Spain
Carlos Sanz de Galdeano
Affiliation:
Institute Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Facultad de Ciencias, 18071 Granada, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sudoite from diagenetic to very low-grade metaclastites of the Betic Cordillera was studied by X-ray diffraction and transmission/analytical electron microscopy. Sudoite formed directly from dickite, the assemblage dickite + sudoite + illite being replaced at increasing metamorphic grade by the assemblage pyrophyllite + sudoite + illite. Sudoite ranges in composition from Mg-rich to Fe-rich chemistries. In addition, a wide variety of mixed-layered structures (illite-sudoite, pyrophyllite-sudoite, and dickite-sudoite) was also identified. Mg-rich sudoite shows a mean chemical composition of (Al2.91Fe0.252+Mg1.80)(Si3.10Al0.90)O10(OH)8, and a IIb ordered structure with b = 9.055 Å. Intermediate Fe-Mg sudoite exhibits a very variable composition, the Fe-rich phases having a mean composition of (Al2.09Fe0.613+Fe0.872+Mg1.44)(Si3.31Al0.69O10(OH)8. These are disordered polytypes with b values ranging from 9.070 to 9.101 Å. Fe occurs in both octahedral sheets, according to two types of substitutions: Fe3+ for Al in the dioctahedral sheet and Fe2+ for Mg in the trioctahedral sheet. Sudoite with such a composition has not been described previously.

Type
Research Article
Copyright
Copyright © 2005, The Clay Minerals Society

References

Abad, I. Nieto, F. Peacor, D.R. and Velilla, N., (2003) Prograde and retrograde diagenetic and metamorphic evolution in metapelitic rocks of Sierra Espuna (Spain) Clay Minerals 38 123 10.1180/0009855033810074.CrossRefGoogle Scholar
Ahn, J.H. Peacor, D.R. and Douglas, S.C., (1988) Formation mechanisms of illite, chlorite and mixed-layers illite/ chlorite in Triassic volcanogenic sediments from the Southland Syncline, New Zealand Contributions to Mineralogy and Petrology 99 8289 10.1007/BF00399368.CrossRefGoogle Scholar
Anceau, A., (1992) Sudoite in some Visean (lower Carboniferous) K-bentonites from Belgium Clay Minerals 27 283292 10.1180/claymin.1992.027.3.02.CrossRefGoogle Scholar
Azañón, J.M., (1994) Metamorfismo de alta presión/baja temperatura, baja presión/alta temperatura y tectónica del Complejo Alpujárride (cordilleras Betico-Rifenas) .Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structure of layer silicates Crystal Structure of Clay Minerals and their X-ray identification London Monograph 5, Mineralogical Society 2839.Google Scholar
Bailey, S.W. and Lister, J.S., (1989) Structures, compositions and X-ray identification of dioctahedral chlorites Clays and Clay Minerals 37 193202 10.1346/CCMN.1989.0370301.CrossRefGoogle Scholar
Bailey, S.W. and Tyler, S.A., (1960) Clay mineral associated with the Lake Superior iron ores Economic Geology 55 150175 10.2113/gsecongeo.55.1.150.CrossRefGoogle Scholar
Banfield, J.F. and Eggleton, R.A., (1988) Transmission electron microscopic study of biotite weathering Clays and Clay Minerals 36 4760 10.1346/CCMN.1988.0360107.CrossRefGoogle Scholar
Banfield, J.F. and Murakami, T., (1988) Atomic-resolution transmission electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chlorite-vermiculite American Mineralogist 83 348357 10.2138/am-1998-3-419.CrossRefGoogle Scholar
Bettison, L.A. and Schiffman, P., (1988) Compositional and structural variation of phyllosilicates from the Point Salt Ophiolite, California American Mineralogist 73 6276.Google Scholar
Billault, V. Beaufort, D. Patrier, P. and Petit, S., (2002) Crystal chemistry of Fe-sudoites from uranium deposits in the Athabasca basin (Saskatchewan, Canada) Clays and Clay Minerals 50 7081 10.1346/000986002761002847.CrossRefGoogle Scholar
Brown, E.H., (1967) The greenschist facies in part of eastern Otago, New Zealand Contributions to Mineralogy and Petrology 14 259292 10.1007/BF00373808.CrossRefGoogle Scholar
Daniels, E.J. and Altaner, S.P., (1990) Clay mineral authigen-esis in coal and shale from the Anthracite region, Pennsylvania American Mineralogist 75 825839.Google Scholar
Eggleton, R.A. and Bailey, S.W., (1967) Structural aspects of dioctahedral chlorite American Mineralogist 52 673689.Google Scholar
Enhelhardt, W. Müller, G. and Kromer, H., (1962) Dioktaedrischer Chlorit (Sudoit) in Sedimenten des mittleren Keupers von Plochingen (Württemberg) Naturwissenschaften 49 205215 10.1007/BF00633957.CrossRefGoogle Scholar
Fransolet, A.M. and Bourguignon, P., (1978) Di/trioctahedral chlorite in quartz veins from the Ardennes, Belgium The Canadian Mineralogist 16 365373.Google Scholar
Fransolet, A.-M. and Schreyer, W., (1984) Sudoite, di/ trioctahedral chlorite: A stable low-temperature phase in the system MgO-Al2O3-SiO2-H2O Contributions to Mineralogy and Petrology 86 409417 10.1007/BF01187144.CrossRefGoogle Scholar
Frey, M., (1970) The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis Sedimentology 15 261279 10.1111/j.1365-3091.1970.tb02189.x.CrossRefGoogle Scholar
Hayashi, H. and Oinuma, K., (1964) Aluminian chlorite from Kamikita mine, Japan Clay Science 2 2230.Google Scholar
Herbillon, A.J. and Makumbi, M.N., (1975) Weathering of chlorite in a soil derived from a chlorite-schist under humid tropical conditions Geoderma 13 89104 10.1016/0016-7061(75)90059-2.CrossRefGoogle Scholar
Islam, AKME and Lotse, E.G., (1986) Quantitative mineralogical analysis of some Bangladesh soils with X-ray, ion exchange and selective dissolution techniques Clay Minerals 21 3142 10.1180/claymin.1986.021.1.03.CrossRefGoogle Scholar
Jiang, W.-T. and Peacor, D.R., (1993) Formation and modification of metastable intermediate sodium potassium mica, paragonite, and muscovite in hydrothermally altered meta-basites from northern Wales American Mineralogist 78 782793.Google Scholar
Kerrick, D.M. and Cotton, W.R., (1971) Stability reactions of jadeite pyroxene in Franciscan metagreywackes near San José, California American Journal of Science 271 350369 10.2475/ajs.271.4.350.CrossRefGoogle Scholar
Kisch, H.J., (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and inter-laboratory samples Journal of Metamorphic Geology 9 665670 10.1111/j.1525-1314.1991.tb00556.x.CrossRefGoogle Scholar
Kübler, B., (1968) Evaluation quantitative du métamorphisme par la cristallinité de l’illite. Etat des progrès réalisés ces dernières années Bulletin de Centre Recherche Pau SNPA 2 385397.Google Scholar
Lázaro, C. Ruiz Cruz, M.D. and Sanz de Galdeano, C., (2003) Características metamórficas del Triásico Maláguide en el sector de Diezma (Sierra Arana, Cordillera Bética) Boletin de la Sociedad Española de Mineralogia 26 123136.Google Scholar
Lee, J.H. and Peacor, D.R., (1985) Ordered 1:1 interstratification of illite and chlorite: a transmission and analytical electron microscopy study Clays and Clay Minerals 33 463467 10.1346/CCMN.1985.0330514.CrossRefGoogle Scholar
Lin, C.-Y. and Bailey, S.W., (1985) Structural data for sudoite Clays and Clay Minerals 33 410414 10.1346/CCMN.1985.0330506.CrossRefGoogle Scholar
Livi, K.J.T. Ferry, J.M. Veblen, D.R. Frey, M. and Connolly, J.A.D., (2002) Reactions and physical conditions during metamorphism of Liassic aluminous black shales and marls in central Switzerland European Journal of Mineralogy 14 647672 10.1127/0935-1221/2002/0014-0647.CrossRefGoogle Scholar
Lorimer, G.W. Cliff, G. and Wenk, H.R., (1976) Analytical electron microscopy of minerals Electron Microscopy in Mineralogy New York Springer-Verlag 506519 10.1007/978-3-642-66196-9_38.CrossRefGoogle Scholar
Makel, G.H. (1985) The geology of the Maláguide complex and its bearing on the geodynamic evolution of the Betic-Rif orogen (Southern Spain and Northern Morocco). Gua Papers of Geology, 22, 263 pp.Google Scholar
Maxwell, D.T. and Hower, J., (1967) High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt series American Mineralogist 52 843857.Google Scholar
Merriman, R.J. Peacor, D.R., Frey, M. and Robinson, D., (1999) Very low-grade metapelites: mineralogy, micro fabrics and measuring reaction progress Low-grade Metamorphism Oxford, UK. Blackwell Science 1060.Google Scholar
Murakami, T. Isobe, H. Sato, T. and Ohnuki, T., (1996) Weathering of chlorite in a quartz-chlorite schist: I. Mineralogical and chemical changes Clays and Clay Minerals 44 244256 10.1346/CCMN.1996.0440210.CrossRefGoogle Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., (1987) The chemical constitution of clays Chemistry of Clays and Clay Minerals London Monograph 6, Mineralogical Society 1128.Google Scholar
Peacor, D.R. and Buseck, P.R., (1992) Diagenesis and low-grade metamorphism of shales and slates Minerals and Reactions at the Atomic Scale Washington, D.C Reviews in Mineralogy, 27, Mineralogical Society of America 335380 10.1515/9781501509735-013.CrossRefGoogle Scholar
Proust, D. Eymery, J.P. and Beaufort, D., (1986) Supergene vermiculitization of a magnesian chlorite: iron and magnesium removal process Clays and Clay Minerals 34 572580 10.1346/CCMN.1986.0340511.CrossRefGoogle Scholar
Reynolds, R.C. and Bailey, S.W., (1988) Mixed-layer chlorite minerals Hydrous Phyllosilicates Washington D.C. Reviews in Mineralogy, 19. Mineralogical Society of America 601629 10.1515/9781501508998-020.CrossRefGoogle Scholar
Ruiz Cruz, M.D. and Rodríguez Jiménez, P., (2002) Correlation between crystallochemical parameters of phyllosilicates and mineral facies in very low-grade metasediments of the Betic Cordillera (Spain): A synthesis Clay Minerals 37 169185 10.1180/0009855023710026.CrossRefGoogle Scholar
Ruiz Cruz, M.D. Sanz de Galdeano, C. and Lázaro, C., (2005) Metamorphic evolution of Triassic rocks from the transition zone between the Maláguide and the Alpujárride complexes (Betic Cordilleras, Spain) European Journal of Mineralogy 17 8191 10.1127/0935-1221/2005/0017-0081.CrossRefGoogle Scholar
Sanz de Galdeano, C. Delgado, F. and López-Garrido, A.C., (1995) Unidades alpujárrides y maláguides al NE de Granada (Cordillera Bética) Geogaceta 18 2729.Google Scholar
Sanz de Galdeano, C. Delgado, F. and López-Garrido, A.C., (1995) Estructura del Alpujárride y del Maláguide al NW de Sierra Nevada (Cordillera Bética) Revista de la Sociedad Geológia de Espana 8 239250.Google Scholar
Sanz de Galdeano, C. Delgado, F. López-Garrido, A.C. and Martín-Algarra, A., (1995) Appartenance alpujárride proposé de l’unité de la Mora au NE de Grenade (Cordillère Bétique, Espagne) Comptes Rendus de l’Academie des Sciences Paris 321 893900.Google Scholar
Sanz de Galdeano, C. Andreo, B. García-Tortosa, F.J. and López-Garrido, A.C., (2001) The Triassic palaeogeographic transition between the Alpujárride and Maláguide complexes, Betic-Rif Internal Zone Palaeo 167 157173 10.1016/S0031-0182(00)00236-4.CrossRefGoogle Scholar
Sudo, T. and Sato, M., (1966) Dioctahedral chlorite Proceedings of the International Clay Conference 1 3339.Google Scholar
Theye, T. and Siedel, H., (1993) Chloritoid, carpholite and sudoite in very low-grade metamorphic rocks of the Wippra metamorphic zone (Harz, Germany) Neues Jahrbuch fur Mineralogie, Monatshefte 1993 7396.Google Scholar
Theye, T. Siedel, H. and Vidal, O., (1992) Carpholite, sudoite and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece European Journal of Mineralogy 4 487507 10.1127/ejm/4/3/0487.CrossRefGoogle Scholar
Warr, L.C. and Rice, H.N., (1994) Interlaboratory standariza-tion and calibration of clay minerals crystallinity and crystallite size data Journal of Metamorphic Geology 12 141152 10.1111/j.1525-1314.1994.tb00010.x.CrossRefGoogle Scholar