Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:18:44.101Z Has data issue: false hasContentIssue false

Complexes of Trimethylphosphine and Dimethylphenylphosphine with Co(II) and Ni(II) on Hectorite and on Zeolites X and Y

Published online by Cambridge University Press:  02 April 2024

Robert A. Schoonheydt
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Leuven (Heverlee), Belgium
Rudi Van Overloop
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Leuven (Heverlee), Belgium
Mathieu Van Hove
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Leuven (Heverlee), Belgium
Johan Verlinden
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Leuven (Heverlee), Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The gas-phase adsorption of trimethylphosphine onto hectorite, exchanged with Co(II) and Ni(II), gives trigonal complexes of the type [M(Ol)3(PMe3)]2+ (M = Co, Ni). Ten Dq values of PMe3 are 2.1 and 2.4 times larger than those of the structural oxygens or solvent molecules. The same complexes form between dimethylphenylphosphine and Ni(II) on hectorite and on synthetic zeolite Y. Co(II) forms pseudotetrahedral complexes with dimethylphenylphosphine ligands. These surface-immobilized transition-metal complexes interact strongly with NO and CH ≡ CH and to a lesser extent with CO and CH2=CH2, giving new types of complexes.

Резюме

Резюме

Адсорбция газовой фазы трехметилфосфина на гекторите, обмененным Co(II) и Ni(II) дает тригональные комплексы типа [M(Ol)3(PMe3)]2+ (где M = Co, Ni). Десять величин Dq для PMe3 являются 2,1 и 2,4 раза больше, чем эти же величины для структурных атомов кислорода или молекул растворителя. Такие же комплексы формируются между двуметилфенилфосфином и Ni(II) на гекторите и на синтетическим цеолите У. Co(II) формирует псевдотетраэдрические комплексы с двуметилфенилфосфиновыми лигандами. Эти поверхностно связанные комплексы переходных металлов сильно взаимодействуют c NO и CH ≠ CH и слабее c CO и CH2 = CH2, формируя новые типы комплексов. [E.G.]

Resümee

Resümee

Die Gasphasenadsorption von Trimethylphosphin an mit Co(II) und Ni(II) ausgetauschten Hektorit ergibt trigonale Komplexe vom Typ [M(Ol)3(PMe3)]2+ (M = Co, Ni). Die 10-Dq-Werte von PMe3 sind 2,1 und 2,4 mal größer als die der Struktur-Sauerstoffe oder der Lösungsmittelmoleküle. Die gleichen Komplexe bilden sich zwischen Dimethylphenylphosphin und Ni(II) an Hektorit und an synthetischem Zeolith Y. Co(II) bildet pseudotetraedrische Komplexe mit Dimethylphenylphosphin-Liganden. Diese Oberflächen-immobilisierten Übergangsmetallkomplexe zeigen starke Wechselwirkung mit MO und CH ≡ CH und geringere Wechselwirkung mit CO und CH2=CH2, wobei neue Komplextypen entstehen. [U.W.]

Résumé

Résumé

L'adsorption du gaz trimethylphosphine sur hectorite, échangée par Ni(II) et Co(II), mène aux complexes trigonaux du type [M(Ol)3(PMe3)]2+ (M = Co, Ni). Les valeurs de 10 Dq du ligand PMe3 sont 2,1–2,4 fois plus larges que celles des oxygènes du réseau ou des molécules du solvent. Les mêmes complexes sont synthétisés par adsorption de diméthylphenylphosphine sur hectorite et sur la zéolithe synthétique Y, échangées par Ni(II). Le Co(II) forme des complexes pseudotétraédriques avec diméthyl-phenylphospine. Tous ces complexes de surface réagissent fortement avec NO et acétylène et faiblement avec CO et ethylene.

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

CRC 1971-, 1972 Handbook of Chemistry and Physics 52nd ed. Cleveland Chemical Rubber Co..Google Scholar
Griffith, J. S., 1971 The Theory of Transition Metal Ions Cambridge Cambridge University Press 437439.Google Scholar
Henderson, W. A. Jr. and Streuli, C. A., 1960 The basicity of phosphines J. Amer. Chem. Soc 82 57915794.CrossRefGoogle Scholar
Herman, R. G., 1979 Electron paramagnetic resonance study of a copper(II) trimethylphosphine oxide complex in Y zeolite Inorganica Chimica Acta 34 119127.CrossRefGoogle Scholar
König, E., 1971 The nephelauxetic effect. Calculation and accuracy of the interelectronic repulsion parameters. I. Cubic high-spin d2, d3, d7 and d8 systems Structure and Bonding 9 175212.CrossRefGoogle Scholar
Lever, A. B. P., 1968 Inorganic Electronic Spectroscopy Amsterdam Elsevier 318355.Google Scholar
Mazzei, M., Marconi, W. and Riocci, R., 1980 Asymmetric hydrogenation of substituted acrylic acids by Rh′-aminophosphine chiral complex supported on mineral clays J. Molecular Catalysis 9 381387.CrossRefGoogle Scholar
Pinnavaia, T. J., Raythatha, R., Lee, J. G. S., Halloran, L. J. and Hoffman, J. F., 1979 Intercalation of catalytically active metal complexes in mica-type silicates. Rhodium hydrogénation catalysts J. Amer. Chem. Soc 101 68936897.CrossRefGoogle Scholar
Pinnavaia, T. J. and Welty, Ph K, 1975 Catalytic hydrogenation of 1-hexene by rhodium complexes in the intra-crystal space of a swelling layer lattice silicate J. Amer. Chem. Soc 97 38193820.CrossRefGoogle Scholar
Pinnavaia, T. J., Welty, Ph K, Hoffman, J. F. and Bailey, S. W., 1975 Catalytic hydrogenation of unsaturated hydrocarbons by cationic rhodium complexes and rhodium metal intercalated in smectite Proc. Int. Clay Conf, Mexico City, 1975 Wilmette, Illinois Applied Publishing Ltd. 373381.Google Scholar
Quayle, W. H. and Pinnavaia, T. J., 1979 Utilization of a cationic ligand for the intercalation of catalytically active rhodium complexes in swelling, layer-lattice silicates Inorg. Chem 18 28402847.CrossRefGoogle Scholar
Raythatha, R. and Pinnavaia, T. J., 1981 Hydrogenation of 1,3-butadienes with a rhodium complex-layered silicate intercalation catalyst J. Organometallic Chem 218 115122.CrossRefGoogle Scholar
Schoonheydt, R. A. and Fripiat, J. J., 1981 Ultraviolet and visible light spectroscopy Advanced Techniques for Clay Mineral Analysis Amsterdam Elsevier 163189.Google Scholar
Schoonheydt, R. A., Van Wouwe, D. and Leeman, H., 1980 Complexation and chemisorption of trimethylphosphine on Ni zeolites J. Chem. Soc. Faraday Trans. I 76 25192530.CrossRefGoogle Scholar
Schoonheydt, R. A., Van Wouwe, D. and Van Hove, M., 1981 Spectroscopic and gravimetric study of the adsorption of trimethylphosphine on Co-zeolites J. Colloid Interface Sci 83 279288.CrossRefGoogle Scholar
Schoonheydt, R. A., Van Wouwe, D., Van Ove, M., Vansant, E. F. and Lunsford, J. H., 1980 Identification of a low-spin Co2+-trimethylphosphine complex in zeolite Y J. Chem. Soc. Chem. Comm. 3334.CrossRefGoogle Scholar