Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T18:24:59.503Z Has data issue: false hasContentIssue false

Comparison of Intercalation Methods for Differentiating Halloysite from Kaolinite

Published online by Cambridge University Press:  02 April 2024

B. K. G. Theng
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Private Bag, Lower Hutt, New Zealand
G. J. Churchman
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Private Bag, Lower Hutt, New Zealand
J. S. Whitton
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Private Bag, Lower Hutt, New Zealand
G. G. C. Claridge
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Private Bag, Lower Hutt, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The intercalation of formamide, potassium acetate, and hydrazine by halloysite and/or ka-olinite-rich samples, with and without subsequent displacement of the interlayer species by water or glycerol/water, has been investigated. Halloysite, as such, or in mixtures with kaolinite is completely expanded by all the treatments used, thereby enabling halloysite concentrations to be determined from the basal X-ray powder diffraction (XRD) peak ratios of the appropriate complexes. The values so obtained are usually proportional to the abundance of tubes, laths, and spherules in the transmission electron micrographs of the samples. The analysis of kaolin samples (halloysite plus kaolinite) by intercalation methods is less straight forward because a proportion of the kaolinite component in the system may not expand, even after lengthy (≥ 18 days) contact of the sample with the intercalating agent. Only prolonged immersion in hydrazine produces complete or nearly complete expansion of this component. When allowance is made for the presence of non-clay mineral components, kaolin-mineral percentages estimated from XRD peak intensity ratios of the hydrazine complexes generally agree with values derived from differential thermal analysis to within ±10%. Kaolinite in mixtures with halloysite cannot be directly determined by intercalation procedures inasmuch as treatments which result in complex formation with kaolinite also expand halloysite. In such systems, kaolinite can be estimated by difference between the concentration of kaolin minerals and halloysite.

Резюме

Резюме

Исследовалось прослаивание формамида, ацетата калия и гидразина галлуазитом и/или обогащенными каолинитом образцами, с и без последующего замещения междуслойных веществ водой или смесью глицерола с водой. Использованые образцы представляли геологические, почвенные, керамические и промышленные материалы. Галлуазит, как таковой, или в смесях с каолинитом полностью расщирялся при всех примененных методах обработки, позволяя, таким образом, определить концентрации галлуазита на основе отношений пиков рентгеновской порошковой дифракции соответствующих комплексов. Полученные таким образом, величины обычно пропорциональны частоте появления трубок, пластинок и шариков в микрографах образцов, полученных при использовании трансмиссионного электронного микроскопа.

Анализ каолиновых минералов (галлуазита плюс каолинита) путем методов прослаивания является менее непосредственным, так как часть каолинитового компонента в системе может не расшириться даже после длительного (≥ 18 дней) контакта образца с включаемым реагентом. Только длительное погружение в гидразине приводило к полному или почти полному расширению этого компонента. После учета присутствия неглинистых минеральных компонентов процентные содержание каолиновых минералов, определенные на основе отношений интенсивности пиков гидразиновых комплексов, согласовывались с величинами, рассчитаными по дифференциальному термическому анализу, с точностью до ± 10% во всех почти случаях. Каолинит в смеси с галлуазитом не может быть непосредственно олределен при помощи методов прослаивания так как методы обработки, которые вызывают образование комплкеса с каолинитом также вызывают расширение галлуазита. В таких системах количество каолинита может быть определено как разница между концентрацией каолиновых минералов и галлуазита. [E.G.]

Resümee

Resümee

Es wurde der Einbau von Formamid, Kaliumacetat, und Hydrazin in Halloysit- und/oder Kaolinit-reiche Proben mit oder ohne Austausch der Zwischenschichtart durch Wasser oder Glyzerin/ Wasser untersucht. Halloysit an sich oder in Mischungen mit Kaolinit wird durch alle verwendeten Methoden vollständig expandiert. Dadurch ist es möglich, den Gehalt an Halloysit aus den Verhältnissen der basalen Röntgenpulverdiffraktometer (XRD)-Peaks der geeigneten Komplexe zu bestimmen. Die derart bestimmten Werte sind im allgemeinen proportional der Menge an Röhren, Leisten und Spiralen in den transmissionselektronenmikroskopischen Aufnahmen der Proben. Die Untersuchung von Kaolinproben (Halloysit und Kaolinit) durch die Wechsellagerungsmethode ist weniger exakt, da ein Teil der Kaolinitkomponente im System u.U. nicht expandiert, selbst nach einer langen Reaktionszeit (≥ 18 Tage) der Probe mit dem Wechsellagerungsagens. Nur eine lange Einwirkung von Hydrazin führt zum vollständigen oder nahezu vollständigen Expandieren dieser Komponente. Wenn man die Anwesenheit von Nicht-Tonmineralkomponenten berücksichtigt, dann stimmen im allgemeinen die aus den XRD-Peakin-tensitätsverhältnissen der Hydrazinkomplexe geschätzten Kaolinmineralanteile mit den Werten aus der Differentialthermoanalyse mit einer Genauigkeit von ± 10% überein. Kaolinit in Mischungen mit Halloysit kann durch Wechsellagerungsmethoden nicht direkt bestimmt werden, da die Methoden, die zu einer Komplexbildung mit Kaolinit führen, auch Halloysit expandieren. In diesem System kann der Kaolini-tanteil aus der Differenz zwischen der Konzentration der Kaolinminerale und der von Halloysit abgeschätzt werden. [U.W.]

Résumé

Résumé

On a investigué l'intercalation de formamide, d'acétate de potassium et d'hydrazine par des échantillons riches en halloysite et/ou en kaolinite, avec et sans le déplacement subséquent de l'espace interfeuillet par l'eau ou le glycol/eau. Les échantillons utilisés représentent des matériaux géologiques, de sol, et céramiques industriels. L'halloysite en tant que telle, ou en mélange avec la kaolinite est complètement dilatée par tous les traitements employés, permettant de cette manière que les concentrations d'halloysite soient déterminées par les proportions des pics XRD de diffraction aux rayons-X de base des complexes appropriés. Les valeurs obtenues ainsi sont généralement proportionnelles à l'abondance de tubes, de lattes, et de sphérules dans les micrographes d’électrons à transmission des échantillons. L'analyse d’échantillons de kaolin (halloysite plus kaolinite) per des méthodes d'intercalation est moins directe parce qu'une proportion du composé kaolinite dans le système pourrait ne pas se dilater, même après que l’échantillon ait été en contact avec l'agent intercalant pendant longtemps (≥ 18 jours). Seule l'immersion prolongée dans l'hydrazine produit l'expansion complète ou presque complète de ce composé. Lorsqu'on tient compte de la présence des composés de minéraux non-argileux, les pourcentages de minéral kaolin estimés à partir de proportions d'intensité de pics XRD des complexes d'hydrazine s'accordent généralement bien avec les valeurs derivées de l'analyse thermale differentielle à ±10% près dans la plupart des cas. La kaolinite, dans des mélanges avec l'halloysite, ne peut pas être directement determinée par des procédés d'intercalation dans la mesure où les traitements qui resultent en la formation de complexe avec la kaolinite dilatent aussi l'halloysite. Dans de tels systèmes, la kaolinite peut être estimée par la différence entre la concentration de minéraux kaolins et halloysites. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

Al-Khalissi, F. and Worrall, W. E., 1982 The effect of crys-tallinity on the quantitative determination of kaolinite Trans. Brit. Ceram. Soc. 81 4346.Google Scholar
Borovec, Z. and Konta, J., 1975 Formation of interiayer complexes in kaolinite and metahalloysite by treatment with potassium acetate and ethylene glycol Proc. 6th Conf. Clay Mineralogy Petrology, Praha, 1973 Prague, Czechoslovakia University of Karlova 6776.Google Scholar
Brindley, G. W., 1966 Ethylene glycol and glycerol complexes of smectites and vermiculites Clay Miner. 6 237259.CrossRefGoogle Scholar
Chekin, S. S., 1982 Swelling of kaolinite crystals in polar organic liquids Izv. Akad. Nauk SSSR, Ser. Geol. 11 8999.Google Scholar
Childs, S. W., Goodman, V. A., Churchman, G. J., Mortland, M. M. and Farmer, V. C., 1979 Application of Mössbauer spectroscopy to the study of iron oxides in some red and yellow/brown soil samples from New Zealand Proc. Int. Clay Conf., Oxford, 1978 Amsterdam Elsevier 555565.Google Scholar
Chukhrov, F. V., Zvyagin, B. B., Heller, L. and Weiss, A., 1966 Halloysite, a crystallochemically and mineralogically distinct species Proc. Int. Clay Conf., Jerusalem, 1966, Vol. 1 Jerusalem Israel Program for Scientific Translations 1125.Google Scholar
Churchman, G. J., 1980 Clay minerals formed from micas and chlorites in some New Zealand soils Clay Miner. 15 5976.CrossRefGoogle Scholar
Churchman, G. J., Aldridge, L. P. and Carr, R. M., 1972 The relationship between the hydrated and dehydrated states of a halloysite Clays & Clay Minerals 20 241246.CrossRefGoogle Scholar
Churchman, G. J. and Theng, B. K. G., 1984 Interactions of halloysites with amides: mineralogical factors affecting complex formation Clay Miner. .CrossRefGoogle Scholar
Churchman, G. J., Whitton, J. S., Claridge, G. G. C. and Theng, B. K. G., 1984 Intercalation method using form-amide for differentiating halloysite from kaolinite Clays & Clay Minerals 32 241248.CrossRefGoogle Scholar
Hewitt, A. E. and Churchman, G. J., 1982 Formation, chemistry and mineralogy of soils from weathered schist, Eastern Otago, New Zealand New Zealand J. Sci. 25 253269.Google Scholar
Hughes, I. R., 1966 Mineral changes of halloysite on drying New Zealand J. Sci. 9 103113.Google Scholar
Hughes, I. R. and Foster, P. K., 1970 The ranking of halloysites and kaolinites by moisture content measurements New Zealand J. Sci. 13 89107.Google Scholar
Jackson, M. L., 1956 Soil Chemical Analysis—Advanced Course Madison, Wisconsin Published by the author, Department of Soil Science, University of Wisconsin.Google Scholar
MacEwan, D. M. C., Wilson, M. J., Brindley, G. W. and Brown, G., 1980 Interiayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and Their X-ray Diffraction London Mineralogical Society 197248.Google Scholar
Mackenzie, R. C. and Mackenzie, R. C., 1970 Simple phyllosilicates based on gibbsite- and brucite-like sheets Differential Thermal Analysis, Vol. 1 London and New York Academic Press 497537.Google Scholar
Marsters, S., 1978 Report upon the extraction and industrial uses of halloysite Proc. Ann. Conf. Australasian Institute of Mining and Metallurgy, Whangarei, New Zealand, 1978 Whangarei Australasian Inst. Mining and Metallurgy, New Zealand Branch 91100.Google Scholar
Martin-Vivaldi, J. L., Pozzuoli, A., Mattias, P., Galan-Huertos, E. and Serratosa, J. M., 1973 The swelling of layer minerals I. Interaction with DMSO and NMFA Proc. Int. Clay Conf, Madrid, 1972, Additional Contributions Madrid Division de Ciencias, C.S.I.C 455468.Google Scholar
Miller, W. D. and Keller, W. D., 1963 Differentiation between endellite-halloysite and kaolinite by treatment with potassium acetate and ethylene glycol Clays & Clay Minerals, Proc. 10th Nat’l. Conf, Austin, Texas, 1961 New York E. Ingerson, ed., Pergamon Press 244253.Google Scholar
Murray, H. H. H. C. and Smith, J. M., 1977 Mineralogy and geology of the Maungaparerua halloysite deposit in New Zealand Clays á Clay Minerals 25 15.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P., 1970 The intercalation of polar organic compounds into kaolinite Clay Miner. 8 421434.CrossRefGoogle Scholar
Range, K. J., Range, A., Weiss, A. and Heller, L., 1969 Fire-clay type kaolinite or fire clay mineral? Experimental classification of kaolinite-halloysite minerals Proc. Int. Clay Conf., Tokyo, 1969, Vol. 1 Jerusalem Israel Univ. Press 313.Google Scholar
Tan, K. H., Hajek, B. F., Dixon, J. B. and Weed, S. B., 1977 Thermal analysis of soils Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 865884.Google Scholar
Theng, B. K. G., 1974 The Chemistry of Clay-Organic Reactions London Adam Hilger.Google Scholar
Wada, K., 1961 Lattice expansion of kaolin minerals by treatment with potassium acetate Amer. Mineral. 46 7891.Google Scholar
Weiss, A., Thielepape, W., Göring, G., Ritter, W., Schäfer, H., Rosenqvist, I. Th. and Graff-Petersen, P., 1963 Kaolinit-Einlagerungs-Verbindungen Proc. Int. Clay Conf., Stockholm, 1963, vol. 1 Oxford Pergamon Press 287305.Google Scholar
Whitton, J. S., 1978 Differential thermal analysis Methods for Mineral and Elemental Analysis 10D D1.E1D1.E5.Google Scholar
Wiewiora, A., Brindley, G. W. and Heller, L., 1969 Potassium acetate intercalation in kaolinite and its removal: effect of material characteristics Proc. Int. Clay Conf, Tokyo, 1969, vol. 1 Jerusalem Israel Univ. Press 723733.Google Scholar
Wilson, M. J. and Tait, J. M., 1977 Halloysite in some soils from north-east Scotland Clay Miner. 12 5966.CrossRefGoogle Scholar