Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T19:18:38.021Z Has data issue: false hasContentIssue false

Comparative Computational Study of NP(V) and U(VI) Adsorption on (110) Edge Surfaces of Montmorillonite

Published online by Cambridge University Press:  01 January 2024

Alena Kremleva*
Affiliation:
Department Chemie, Technische Universität München, 85747, Garching, Germany
Sven Krüger
Affiliation:
Department Chemie, Technische Universität München, 85747, Garching, Germany
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sorption of U(VI) on clay and related minerals has been inspected experimentally and computationally because of its central role in safety considerations of geological repositories for highly radioactive waste. Np(V), which also has long half-life isotopes, has received considerably less attention. The purpose of the present study was to investigate computationally the adsorption of Np(V) on a clay-mineral surface and to compare it to adsorption of U(VI). As a sample case study, adsorption of Np(V) at the (110) edge surface of the common clay mineral montmorillonite was modeled. The density functional approach and periodic supercell models were applied. Mono- and bidentate adsorption complexes with coordination numbers 4 and 5 were inspected and compared to corresponding U(VI) species. While U(VI) prefers bidentate adsorption complexes with varying coordination numbers, Np(V) is more stable when monodentate-coordinated with a coordination number of four. In line with its smaller hydrolysis constant in aqueous solution, Np(V) shows a lower tendency to form monohydroxides on the mineral surface compared to U(VI). As no experimental geometry parameters are available for Np(V) adsorbed on montmorillonite, the results were compared tentatively to EXAFS data for adsorption at kaolinite and good agreement for the geometry changes due to adsorption was found for the more preferred adsorbed species.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2016

Footnotes

This paper is published as part of a special issue on the subject of ‘Computational Molecular Modeling.’ Some of the papers were presented during the 2015 Clay Minerals Society-Euroclay Conference held in Edinburgh, UK.

References

Allen, P.G. Bucher, J.J. Shuh, D.K. Edelstein, N.M. and Reich, T., 1997 Investigation of aquo and chloro complexes of UO22+, NpO2+, Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy Inorganic Chemistry 36 46764683.CrossRefGoogle Scholar
Amayri, S. Banik, N.L. Breckheimer, M. Buda, R.A. Burger, S. Drebert, J. Jermolajev, A. Kratz, J.V. Kuczewski, B. Kutscher, D. Reich, T.Y. Reich, T. Trautmann, N., Marquardt, C.M., 2008 Interaction of neptunium and plutonium with humic substances and kaolinite Migration of Actinides in the System Clay, Humic Substances, Aquifer Karlsruhe, Germany FZKA 7407, Forschungszentrum Karlsruhe 141216.Google Scholar
Amayri, S. Jermolajev, A. and Reich, T., 2011 Neptunium(V) sorption on kaolinite Radiochimica Acta 99 349357.CrossRefGoogle Scholar
Antonio, M.R. Soderholm, L. Williams, C.W. Blaudeau, J.P. and Bursten, B.E., 2001 Neptunium redox speciation Radiochimica Acta 89 1725.CrossRefGoogle Scholar
Arai, Y. Moran, P.B. Honeyman, B.D. and Davis, J.A., 2007 In situ spectroscopic evidence for neptunium(V)-carbonate inner-sphere and outer-sphere ternary surface complexes on hematite surfaces Environmental Science & Technology 41 39403944.CrossRefGoogle ScholarPubMed
Arnold, T. Scheinost, A.C. Baumann, N. Brendler, V., Bernhard, G., 2006 Surface speciation of uranyl (VI) on gibbsite: A combined spectroscopic approach Annual Report Dresden-Rossendorf, Germany Institute of Radiochemistry 53.Google Scholar
Benedicto, A. Begg, J.D. Zhao, P. Kersting, A.B. Missana, T. and Zavarin, M., 2014 on montmorillonite: NpO2+-Na+-K+-Ca2+-Mg2+ selectivity coefficients Applied Geochemistry 47 177185.CrossRefGoogle Scholar
Bidoglio, G. Tanet, G. and Chatt, A., 1985 Studies on neptunium (V) carbonate complexes under geologic repository conditions Radiochimica Acta 38 2126.CrossRefGoogle Scholar
Blöchl, P.E., 1994 Projector augmented wave method Physical Review B 50 1795317979.CrossRefGoogle ScholarPubMed
Bradbury, M.H. and Baeyens, B., 2005 Experimental measurements and modeling of sorption competition on montmorillonite Geochimica et Cosmochimica Acta 69 41874197.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B., 2005 Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: Linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides Geochimica et Cosmochimica Acta 69 875892.CrossRefGoogle Scholar
Butler, D., 2010 France digs deep for nuclear waste Nature 466 804805.CrossRefGoogle ScholarPubMed
Catalano, J.G. and Brown, G.E., 2005 Uranyl adsorption onto montmorillonite: Evaluation of binding sites and carbonate complexation Geochimica et Cosmochimica Acta 69 29953005.CrossRefGoogle Scholar
Chisholm-Brause, C. Conradson, S.D. Buscher, C.T. Eller, P.G. and Morris, D.E., 1994 Speciation of uranyl sorbed at multiple binding-sites on montmorillonite Geochimica et Cosmochimica Acta 58 36253631.CrossRefGoogle Scholar
Churakov, S.V., 2007 Structure and dynamics of the water films confined between edges of pyrophyllite: A first principle study Geochimica et Cosmochimica Acta 71 11301144.CrossRefGoogle Scholar
Combes, J.M. Chisholm-Brause, C.J. Brown, G.E. Parks, G.A. Conradson, S.D. Eller, P.G. Triay, I.R. Hobart, D.E. and Meijer, A., 1992 EXAFS spectroscopic study of neptunium(V) sorption at the alpha-FeOOH water interface Environmental Science & Technology 26 376382.CrossRefGoogle Scholar
Cotton, S., 2006 Lanthanide and Actinide Chemistry Chichester, UK Wiley.CrossRefGoogle Scholar
Del Nero, M. Assada, A. Madé, B. Barillon, R. and Duplâtre, G., 2004 Surface charges and Np(V) sorption on amorphous Al and Fe silicates Chemical Geology 211 1545.CrossRefGoogle Scholar
Den Auwer, C. Drot, R. Simoni, E. Conradson, S.D. Gailhanou, M. and de Leon, J.M., 2003 Grazing incidence XAFS spectroscopy of uranyl sorbed onto TiO2 rutile surfaces New Journal of Chemistry 27 648655.CrossRefGoogle Scholar
Denecke, M.A. Reich, T. Pompe, S. Bubner, M. Heise, K.H. Nitsche, H. Allen, P.G. Bucher, J.J. Edelstein, N.M. and Shuh, D.K., 1997 Differentiating between monodentate and bidentate carboxylate ligands coordinated to uranyl ions using EXAFS Journal de Physique IV 7 637638.Google Scholar
Dent, A.J. Ramsay, J.D.F. and Swanton, S.W., 1992 An EXAFS study of uranyl-ion in solution and sorbed onto silica and montmorillonite clay colloids Journal of Colloid and Interface Science 150 4560.CrossRefGoogle Scholar
Fröhlich, D.R., 2015 Sorption of neptunium on clays and clay minerals — a review Clays and Clay Minerals 63 262276.CrossRefGoogle Scholar
Geckeis, H. Lützenkirchen, J. Polly, R. Rabung, T. and Schmidt, M., 2013 Mineral-water interface reactions of actinides Chemical Reviews 113 10161062.CrossRefGoogle ScholarPubMed
Greathouse, J.A. and Cygan, R.T., 2005 Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface Physical Chemistry Chemical Physics 7 35803586.CrossRefGoogle ScholarPubMed
Greathouse, J.A. and Cygan, R.T., 2006 Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: Results from molecular simulations Environmental Science & Technology 40 38653871.CrossRefGoogle ScholarPubMed
Grenthe, I. Fuger, J. Konings, R. Lemire, R. Muller, A. Nguyen-Trung, C. and Wanner, H., 2004 Chemical Thermodynamics of Uranium Paris OECD Publications.Google Scholar
Gückel, K. Rossberg, A. Müller, K. Brendler, V. Bernhard, G. and Foerstendorf, H., 2013 Spectroscopic identification of binary and ternary surface complexes of Np(V) on gibbsite Environmental Science & Technology 47 1441814425.CrossRefGoogle ScholarPubMed
Hennig, C. Reich, T. Dähn, R. and Scheidegger, A.M., 2002 Structure of uranium sorption complexes at montmorillonite edge sites Radiochimica Acta 90 653657.CrossRefGoogle Scholar
Ikeda-Ohno, A. Hennig, C. Rossberg, A. Funke, H. Scheinost, A.C. Bernhard, G. and Yaita, T., 2008 Electrochemical and complexation behavior of neptunium in aqueous perchlorate and nitrate solutions Inorganic Chemistry 47 82948305.CrossRefGoogle ScholarPubMed
Kosmulski, M., 2012 IEP as a parameter characterizing the pH-dependent surface charging of materials other than metal oxides Advances in Colloid and Interface Science 171-172 7786.CrossRefGoogle ScholarPubMed
Kowal-Fouchard, A. Drot, R. Simoni, E. and Ehrhardt, J.J., 2004 Use of spectroscopic techniques for uranium (VI)/ montmorillonite interaction modeling Environmental Science & Technology 38 13991407.CrossRefGoogle ScholarPubMed
Kremleva, A. Krüger, S. and Rösch, N., 2008 Density functional model studies of uranyl adsorption on (001) surfaces of kaolinite Langmuir 24 95159524.CrossRefGoogle ScholarPubMed
Kremleva, A. Krüger, S. and Rösch, N., 2011 Uranyl adsorption at (010) edge surfaces of kaolinite: A density functional study Geochimica et Cosmochimica Acta 75 706718.CrossRefGoogle Scholar
Kremleva, A. Krüger, S. and Rösch, N., 2015 Uranyl adsorption at solvated edge surfaces of 2:1 smectites. A density functional study Physical Chemistry Chemical Physics 17 1375713768.CrossRefGoogle ScholarPubMed
Kremleva, A. Krüger, S. and Rösch, N., 2016 Toward a reliable energetics of adsorption at solvated mineral surfaces: A computational study of uranyl (VI) on 2:1 clay minerals Journal of Physical Chemistry C 120 324335.CrossRefGoogle Scholar
Křepelová, A. Reich, T. Sachs, S. Drebert, J. and Bernhard, G., 2008 Structural characterization of U(VI) surface complexes on kaolinite in the presence of humic acid using EXAFS spectroscopy Journal of Colloid and Interface Science 319 4047.CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmüller, J., 1996 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Computational Materials Science 6 1550.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Physical Review B 54 1116911186.CrossRefGoogle ScholarPubMed
Kresse, G. and Hafner, J., 1993 Ab initio molecular dynamics for liquid metals Physical Review B 47 558561.CrossRefGoogle ScholarPubMed
Kresse, G. and Hafner, J., 1993 Ab initio molecular dynamics for open shell transition metals Physical Review B 48 1311513118.CrossRefGoogle ScholarPubMed
Kresse, G. and Hafner, J., 1994 Ab initio molecular dynamics simulation of the liquid metal amorphous semiconductor transition in germanium Physical Review B 49 1425114269.CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D., 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Physical Review B 59 17581775.CrossRefGoogle Scholar
Lectez, S. Roques, J. Salanne, M. and Simoni, E., 2012 Car-Parrinello molecular dynamics study of the uranyl behaviour at the gibbsite/water interface The Journal of Chemical Physics 137 154705.CrossRefGoogle ScholarPubMed
Lemire, R. Fuger, J. Nitsche, H. Potter, P. Rand, M. Rydberg, J. Spahiu, K. Sullivan, J. Ullman, W. Vitorge, P. and Wanner, H., 2001 Chemical Thermodynamics of Neptunium and Plutonium Amsterdam Elsevier.Google Scholar
Liu, X. Lu, X. Sprik, M. Cheng, J. Meijer, E. J. and Wang, R., 2013 Acidity of edge surface sites of montmorillonite and kaolinite Geochimica et Cosmochimica Acta 117 180190.CrossRefGoogle Scholar
Liu, X.D. Cheng, J. Sprik, M. Lu, X.C. and Wang, R.C., 2014 Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations Geochimica et Cosmochimica Acta 140 410417.CrossRefGoogle Scholar
Lo, C. and Trout, B.L., 2004 Density-functional theory characterization of acid sites in chabazite Journal of Catalysis 227 7789.CrossRefGoogle Scholar
MacDonald, A.H. Pickett, W.E. and Koelling, D.D., 1980 A linearized relativistic augmented-plane-wave method utilizing approximate pure spin basis functions Journal of Physics C — Solid State Physics 13 26752683.CrossRefGoogle Scholar
MacDonald, A.H. and Vosko, S.H., 1979 Relativistic density functional formalism Journal of Physics C — Solid State Physics 12 29772990.CrossRefGoogle Scholar
Marques Fernandes, M. Baeyens, B. Dähn, R. Scheinost, A.C. and Bradbury, M.H., 2012 U(VI) sorption on montmorillonite in the absence and presence of carbonate: A macroscopic and microscopic study Geochimica et Cosmochimica Acta 93 262277.CrossRefGoogle Scholar
Morris, D.E. Chisholm-Brause, C.J. Barr, M.E. Conradson, S.D. and Eller, P.G., 1994 Optical spectroscopic studies of the sorption of UO22+ species on a reference smectite Geochimica et Cosmochimica Acta 58 36133623.CrossRefGoogle Scholar
Müller, K. Foerstendorf, H. Brendler, V. and Bernhard, G., 2009 Sorption of Np(V) onto TiO2, SiO2, and ZnO: An in situ ATR FT-IR spectroscopic study Environmental Science & Technology 43 76657670.CrossRefGoogle Scholar
Müller, K. Foerstendorf, H. Meusel, T. Brendler, V. Lefevre, G. Comarmond, M.J. and Payne, T.E., 2012 Sorption of U(VI) at the TiO2-water interface: An in situ vibrational spectroscopic study Geochimica et Cosmochimica Acta 76 191205.CrossRefGoogle Scholar
Niitsu, Y. Sato, S. Ohashi, H. Sakamoto, Y. Nagao, S. Ohnuki, T. and Muraoka, S., 1997 Effects of humic acid on the sorption of neptunium(V) on kaolinite Journal of Nuclear Materials 248 328332.CrossRefGoogle Scholar
Pauling, L., 1929 The principles determining the structure of complex ionic crystals Journal of the American Chemical Society 51 10101026.CrossRefGoogle Scholar
Perdew, J.P. and Wang, Y., 1992 Accurate and simple analytic representation of the electron gas correlation energy Physical Review B 45 1324413249.CrossRefGoogle ScholarPubMed
Reich, T. Bernhard, G. Geipel, G. Funke, H. Hennig, C. Rossberg, A. Matz, W. Schell, N. and Nitsche, H., 2000 The Rossendorf beam line ROBL — a dedicated experimental station for XAFS measurements of actinides and other radionuclides Radiochimica Acta 88 633637.CrossRefGoogle Scholar
Reich, T. Reich, T.Y. Amayri, S. Drebert, J. Banik, N.L. Buda, R.A. Kratz, J.V. and Trautmann, N., 2007 Application of XAFS spectroscopy to actinide environmental science AIP Conference Proceedings 882 179183.CrossRefGoogle Scholar
Schlegel, M.L. and Descostes, M., 2009 Uranium uptake by hectorite and montmorillonite: A solution chemistry and polarized EXAFS study Environmental Science & Technology 43 85938598.CrossRefGoogle ScholarPubMed
Schmeide, K. and Bernhard, G., 2010 Sorption of Np(V) and Np(IV) onto kaolinite: Effects of pH, ionic strength, carbonate and humic acid Applied Geochemistry 25 12381247.CrossRefGoogle Scholar
Sylwester, E.R. Hudson, E.A. and Allen, P.G., 2000 The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite Geochimica et Cosmochimica Acta 64 24312438.CrossRefGoogle Scholar
Tazi, S. Rotenberg, B. Salanne, M. Sprik, M. and Sulpizi, M., 2012 Absolute acidity of clay edge sites from ab-initio simulations Geochimica et Cosmochimica Acta 94 111.CrossRefGoogle Scholar
Tettenhorst, R. and Roberson, H.E., 1973 X-ray-diffraction aspects of montmorillonites American Mineralogist 58 7380.Google Scholar
Tochiyama, O. Yamazaki, H. and Mikami, T., 1996 Sorption of neptunium(V) on various aluminum oxides and hydrous aluminum oxides Radiochimica Acta 73 191198.CrossRefGoogle Scholar
Turner, D.R. Pabalan, R.T. and Bertetti, F.P., 1998 Neptunium(V) sorption on montmorillonite: An experimental and surface complexation modeling study Clays and Clay Minerals 46 256269.CrossRefGoogle Scholar
Vallet, V. Moll, H. Wahlgren, U. Szabo, Z. and Grenthe, I., 2003 Structure and bonding in solution of dioxouranium(VI) oxalate complexes: Isomers and intramolecular ligand exchange Inorganic Chemistry 42 19821993.CrossRefGoogle Scholar
Wahlgren, U. Moll, H. Grenthe, I. Schimmelpfennig, B. Maron, L. Vallet, V. and Gropen, O., 1999 Structure of uranium(VI) in strong alkaline solutions. A combined theoretical and experimental investigation Journal of Physical Chemistry A 103 82578264.CrossRefGoogle Scholar
Zavarin, M. Powell, B.A. Bourbin, M. Zhao, P. and Kersting, A.B., 2012 Np(V) and Pu(V) ion exchange and surface-mediated reduction mechanisms on montmorillonite Environmental Science & Technology 46 26922698.CrossRefGoogle ScholarPubMed