Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T06:57:23.153Z Has data issue: false hasContentIssue false

Clayey Cap-Rock Behavior in H2O-CO2 Media at Low Pressure and Temperature Conditions: An Experimental Approach

Published online by Cambridge University Press:  01 January 2024

Eric Kohler*
Affiliation:
Institut Français du Pétrole, Direction Géologie-Géochimie-Géophysique, 1-4 Avenue de bois Préau, 92025, Rueil-Malmaison, France
Teddy Parra
Affiliation:
Institut Français du Pétrole, Direction Géologie-Géochimie-Géophysique, 1-4 Avenue de bois Préau, 92025, Rueil-Malmaison, France
Olivier Vidal
Affiliation:
Laboratoire de Géodynamique des Chaînes Alpines, Université Joseph Fourier, 1381 rue de la piscine, BP 53, F-38041, Grenoble Cedex, France
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The storage of CO2 in geological reservoirs requires an understanding of the impact of CO2 on clay-rich sealing cap-rocks to identify and explore critical parameters that modify petrophysical properties such as permeability and fracturing. The purpose of this study was to investigate the effect of heating, under different hydrated-CO2 partial pressures, on the chemical compositions and relative amounts of mineral phases in the Saint Martin de Bossenay (SMB, Paris Basin, France) cap-rock in order to identify possible mineral-phase transitions and to estimate reaction kinetics induced by the presence of excess dissolved CO2.

X-ray diffraction, transmission electron microscopy, and electron microprobe analyses were employed to study mineral alteration, with particular attention given to visualization and quantification of the mineral evolution of clay minerals. In all the altered mixtures investigated, the illitization of clays was combined with the formation of anhydrite. These changes were accompanied by a dolomitization and a slight increase in the quartz content. The CO2-rich samples crystallized Fe2+-and K+-enriched illites, whereas the CO2-free experiments precipitated Al3+-deprived and Mg2+-enriched illites. Advanced characterizations of cap-rock material allowed reaction paths, induced by the increase in dissolved CO2 in the porous media, to be determined precisely. The results place strong constraints on numerical models aimed at evaluating the safety of an SMB site.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Al Darouich, T. Behar, F. and Largeau, C., 2006 Thermal cracking of the light aromatic fraction of Safaniya crude oil — experimental study and compositional modelling of molecular classes Organic Geochemistry 37 11301154 10.1016/j.orggeochem.2006.04.003.CrossRefGoogle Scholar
Andre, L. Audigane, P. Azaroual, M. and Menjoz, A., 2007 Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France) Energy Conversion and Management 48 17821797 10.1016/j.enconman.2007.01.006.CrossRefGoogle Scholar
Béhar, F. Vandenbroucke, M. Tang, Y. Marquis, F. and Espitalié, J., 1997 Thermal cracking of kerogen in open and closed systems: determination of kinetics parameters and stoichiometric coefficients for oil and gas generation Organic Geochemistry 26 321339 10.1016/S0146-6380(97)00014-4.CrossRefGoogle Scholar
Bonijoly, D. Hanot, F. Robellin, C. Serrano, O. Brosse, E. Houel, P. Naville, C. Rigollet, C. Manai, T. and Renoux, P., 2006 Site selection for CO2 storage in deep aquifers of the Paris basin, France Proceedings of the International Symposium on Site Characterization for CO 2Geologic Storage (CO 2SC), 2006 California, USA Berkeley 6970.Google Scholar
Brosse, E. de Smedt, G. Bonijoly, D. Garcia, D. Saysset, S. Manai, T. Thoraval, A. and Crepin, S., 2006 PICOREF: Towards an experimental site for CO2 geological storage in the Paris Basin? Proceedings of the 8th International conference on Greenhouse Gas Control Technologies, 2006 Norway Trondheim 21.Google Scholar
Claret, F., 2001 Caractérisation structurale des transitions minéralogiques dans les formations argileuses: Contrôles et implications géochimiques des processus d’illitisation Cas particulier d’une perturbation alcaline dans le Callovo-Oxfordien Laboratoire Meuse/Haute Marne Grenoble, France Université Joseph Fourier-Grenoble I 160 pp.Google Scholar
De Andrade, V. Vidal, O. Lewin, E. O’Brien, P. and Agaard, P., 2006 Quantification of electron microprobe compositional maps of rock thin sections: an optimized method and examples Journal of Metamorphic Geology 24 655668 10.1111/j.1525-1314.2006.00660.x.CrossRefGoogle Scholar
Ergun, S., 1970 Xr-ray scattering by very defective lattices Physical Review B 131 33713380 10.1103/PhysRevB.1.3371.CrossRefGoogle Scholar
Gaus, I. Azaroual, M. and Czernichowski-Lauriol, I., 2005 Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea) Chemical Geology 217 319337 10.1016/j.chemgeo.2004.12.016.CrossRefGoogle Scholar
Kaszuba, J.P. Janecky, D.R. and Snow, M.G., 2003 Carbon dioxide reaction processes in a model brine aquifer at 200 degrees C and 200 bars: implications for geologic sequestration of carbon Applied Geochemistry 18 10651080 10.1016/S0883-2927(02)00239-1.CrossRefGoogle Scholar
Kaszuba, J.P. Janecky, D.R. and Snow, M.G., 2005 Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository Chemical Geology 217 277293 10.1016/j.chemgeo.2004.12.014.CrossRefGoogle Scholar
Kretz, R., 1983 Symbols for rock-forming minerals American Mineralogist 68 277279.Google Scholar
Lagneau, V. Pipart, A. and Catalette, H., 2005 Reactive transport modelling of CO2 sequestration in deep saline aquifers Oil & Gas Science and Technology-Revue de l’Institut Francais du Petrole 60 231247 10.2516/ogst:2005014.CrossRefGoogle Scholar
Lanson, B. and Besson, G., 1992 Characterization of the end of smectite-to-illite transformation: decomposition of X-ray patterns Clays and Clay Minerals 40 4052 10.1346/CCMN.1992.0400106.CrossRefGoogle Scholar
Meunier, A. and Velde, B., 1989 Solid solutions in I-S mixed-layer minerals and illite American Mineralogist 74 11061112.Google Scholar
Meunier, A. and Velde, B., 2004 Illite Heidelberg Springer-Verlag, Berlin 10.1007/978-3-662-07850-1 286 pp.CrossRefGoogle Scholar
Parra, T. Vidal, O. and Agard, P., 2002 A thermodynamic model for Fe-Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages Contributions to Mineralogy and Petrology 143 706732 10.1007/s00410-002-0373-6.CrossRefGoogle Scholar
Parra, T. Vidal, O. and Theye, T., 2005 Experimental data on the Tschermak substitution in Fe-chlorite American Mineralogist 90 359370 10.2138/am.2005.1556.CrossRefGoogle Scholar
Plancon, A. and Drits, V.A., 2000 Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals Clays and Clay Minerals 48 5762 10.1346/CCMN.2000.0480107.CrossRefGoogle Scholar
Ransom, B.L. and Helgeson, H.C. (1987) Thermodynamic prediction of the relative stabilities of illite and smectite in diagenetic processes, Geological Society of America, 1987 annual meeting and exposition. Geological Society of America, 1987, vol. 19, Issue 7, 813 pp.Google Scholar
Regnault, O. Lagneau, V. Catalette, H. and Schneider, H., 2005 Experimental study of pure mineral phases/super-critical CO2 reactivity. Implications for geological CO2 sequestration Comptes Rendus Geoscience 337 13311339 10.1016/j.crte.2005.07.012.CrossRefGoogle Scholar
Schroeder, P.A., 1990 Far infrared, X-ray powder diffraction, and chemical investigation of potassium micas American Mineralogist 75 983991.Google Scholar
Środoń, J. Drits, V.A. McCarty, D.K. Hsieh, J.C.C. and Eberl, D.D., 2001 Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations Clays and Clay Minerals 49 514528 10.1346/CCMN.2001.0490604.CrossRefGoogle Scholar
Vantelon, D. Pelletier, M. Michot, L.J. Barres, O. and Thomas, F., 2001 Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region Clay Minerals 36 369379 10.1180/000985501750539463.CrossRefGoogle Scholar
Velde, B., 1985 Clay Minerals: A Physico-chemical Explanation of their Occurrence Amsterdam Elsevier 426 pp.Google Scholar
Velde, B. and Vasseur, G., 1992 Estimation of the diagenetic smectite to illite transformation in time-temperature space American Mineralogist 77 967976.Google Scholar
Verlaguet, A. Brunet, F. Goffe, B. and Murphy, W.M., 2006 Experimental study and modeling of fluid reaction paths in the quartz-kyanite +/− muscovite-water system at 0.7 GPa in the 350–550 degrees C range: Implications for Al selective transfer during metamorphism Geochimica et Cosmochimica Acta 70 17721788 10.1016/j.gca.2005.12.014.CrossRefGoogle Scholar
Vidal, O., 2001 A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 degrees to 600 degrees C, 1 to 25 kb range American Journal of Science 301 557592 10.2475/ajs.301.6.557.CrossRefGoogle Scholar
Vidal, O. and Parra, T., 2000 Exhumation paths of high pressure metapelites obtained from local equilibria for chlorite-phengite assemblages Geological Journal 35 139161 10.1002/gj.856.CrossRefGoogle Scholar
Vidal, O. Parra, T. and Vieillard, P., 2005 Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation American Mineralogist 90 347358 10.2138/am.2005.1554.CrossRefGoogle Scholar
Whitney, G. and Northrop, H.R., 1988 Experimental investigation of the smectite to illite reaction: Dual reaction mechanisms and oxygen-isotope systematics American Mineralogist 73 7790.Google Scholar