Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T23:41:02.860Z Has data issue: false hasContentIssue false

Clay Minerals of Lake Abert, an Alkaline, Saline Lake

Published online by Cambridge University Press:  02 April 2024

Blair F. Jones
Affiliation:
U.S. Geological Survey, National Center, Reston, Virginia 22092
Alan H. Weir
Affiliation:
Rothamsted Experimental Station, Harpenden, Hertforshire AL5 2JQ, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mineralogical and chemical analyses of fine clay fractions from in and around Lake Abert, Lake County, Oregon, show that the pyroclastic rocks supplying detritus to the lake weather to a suite of layer silicate clay minerals varying from high-charge dioctahedral montmorillonite to montmorillonite/intergrade smectite-chlorite interstratifications. In the lake these clays extract K, Mg, and Si to form authigenic interstratified illite and a trioctahedral, Mg-rich mineral resembling stevensite in composition. Both the neoformed interstratifications contribute little unambiguously to X-ray powder diffraction patterns, which are dominated by the reflections of detrital clays. From limited data it appears that the illite occurs below 0.8 m depth in sediments of a possibly somewhat fresher (brackish) lake and the trioctahedral interstratification between 0.4 and 0.2 m depth in sediments of a lake of about the same size and salinity (about 30–90 g/kg) as that of the present lake.

Резюме

Резюме

Минералогические и химические анализы мелких фракций глин, взятых изнутри и из окрестности озера Аберт в дистрикте Озеро в Орегоне, указывают, что пирокластические породы (которые доставляют детритус в озеро) выветриваются и образуют слоистые силикатовые глинистые минералы, отличающиеся по составу от заряженных двухоктаэдрических монтмориллонитов до переслаиваний монтмориллонит-смектит-хлорит. В озере эти глины извлекают из воды К, Mg, и Si для образования аутигенных переслаивающихся иллитов и триоктаэдрического, Mg-обогащенного минерала, напоминающего по составу стевенсит. Оба свежеобразованные переслаивания способствуют частично недвусмысленно рентгеновским порошковым диффрактограммам, в которых доминируют отражения детритовых глин. На основании ограниченных данных кажется, что иллит находится ниже глубины 0,8 м в осадках немного пресного озера (солоноватого), а триоктаэдрические переслаивания проявляются на глубине между 0,4 и 0,2 м в осадках озера примерно такого же самого размера и солености (около 30–90 г/кг), как существующего в настоящее время озера. [E.G.]

Resümee

Resümee

Mineralogische und chemische Analysen von feinen Tonfraktionen aus dem Innern und vom Rand des Lake Abert, Lake County, Oregon, zeigen, daß pyroklastische Gesteine Gesteinsschutt in den See liefern, der zu einer Abfolge von Tonmineralen verwittert, die von stark beladenem dioktaedrischem Montmorillonit bis Montmorillonit/Smektit-bzw. Montmorillonit/Chlorit-Wechsellagerungen variieren. Im See extrahieren diese Tone K, Mg, und Si, um autigene Illit-Wechsellagerungen und ein trioktaedrisches Mg-reiches Mineral, das in der Zusammensetzung mit Stevensit vergleichbar ist, zu bilden. Beide neugebildeten Wechsellagerungen tragen wenig eindeutige Reflexe zur Röntgenpulveraufnahme bei, die vor allem die Reflexe der detritischen Tone zeigt. Aus den begrenzten Daten geht hervor, daß der Illit unter 0,8 m Tiefe in den Sedimenten eines möglicherweise etwas frischeren (brackischen) Sees auftreten und die triok-taedrischen Wechsellagerungen zwischen 0,4 und 0,2 m Tiefe in Sedimenten eines Sees, der etwa die gleiche Größe und die gleiche Salinität aufweist (etwa 30–90 g/kg) wie der gegenwärtige See. [U.W.]

Résumé

Résumé

Des analyses minéralogiques et chimiques de fractions d'argile fines provenant de l'intérieur et d'autour du Lac Abert, Lake County, Oregon, montrent que les roches pyroclastiques fournissant du détritus au lac s'altèrent en une suite de minéraux argileux silicates variant de montmorillonite dioctaèdrale à haute charge à des interstratifications montmorillonite/smectite-chlorite intergrade. Dans le lac, ces argiles extraient K, Mg, et Si pour former de l'illite authigénique interstratifiée et un minéral riche en Mg ressemblant à la stevensite. Ces deux interstratifications nouvellement formées contribuent peu sans ambiguité aux clichés de diffraction poudrée des rayons-X, qui sont dominés par les réflections des argiles détritiques. A partir de données limitées il semble que l'illite se trouve sous une profondeur de 0,8 m dans les sédiments d'un lac possiblement à eau plus fraîche (saumure), et que l'interstratification trioctaèdrale se trouve entre 0,4 et 0,2 m de profondeur dans les sédiments d'un lac d’à peu près la même taille et de même salinité (~30–90 g/kg) que celles du lac présent. [D.J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

References

Brindley, G. W., 1955 Stevensite, a montmorillonite-type mineral showing mixed-layer characteristics Amer. Mineral. 40 239247.Google Scholar
Brindley, G.W., Brindley, G. W. and Brown, G., 1980 Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Brindley, G. W., Bish, D. L. and Wan, H.-M., 1977 The nature of kerolite, its relation to talc and stevensite Mineral. Mag. 41 443452.CrossRefGoogle Scholar
Brown, G., Newman, A. C. D., Rayner, J. H., Weir, A. H., Greenland, D. J. and Hayes, M. H. B., 1978 The structure and chemistry of soil clay minerals The Chemistry of Soil Constituents New York Wiley 29178.Google Scholar
Brown, G., Edwards, B., Ormerod, E. C. and Weir, A. H., 1972 A simple diffractometer heating stage Clay Miner. 9 407413.CrossRefGoogle Scholar
Carmouze, J. P., 1976 La regulation hydrogéochimique du lac Tchad .Google Scholar
Deike, R. G., Jones, B. F. and Nissenbaum, A., 1980 Provenance, distribution, and alteration of volcanic sediments in a saline alkaline lake Hypersaline Brines and Evaporite Environments Amsterdam Elsevier 167193.Google Scholar
Drever, J. I., 1971 Magnesium-iron replacement in clay minerals in anoxic marine sediments Science 172 13341336.CrossRefGoogle ScholarPubMed
Drever, J. I., 1974 The magnesium problem The Sea 5 337357.Google Scholar
Dyni, J. R., 1976 Trioctahedral smectite in the Green River Formation, Duchesne County, Utah U.S. Geol. Surv. Prof. Pap. .CrossRefGoogle Scholar
Eberl, D.D., Jones, B. F. and Khoury, H. N., 1982 Mixed layer kerolite/stevensite from the Amargosa Desert, Nevada Clays & Clay Minerals 30 321326.CrossRefGoogle Scholar
Eugster, H. P. and Jones, B. F., 1968 Gels composed of sodium aluminum silicate, Lake Magadi, Kenya Science 171 160164.CrossRefGoogle Scholar
Eugster, H. P. and Jones, B. F., 1979 Behavior of major solutes during closed-basin brine evolution Amer. J. Sci. 279 609631.CrossRefGoogle Scholar
Eugster, H. P. and Maglione, G., 1979 Brines and evaporites of the Lake Chad basin, Africa Geochim. Cosmochim. Acta 43 973981.CrossRefGoogle Scholar
Farmer, V. C. and Farmer, V. C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineral. Soc..CrossRefGoogle Scholar
Gac, J.Y., Droubi, A., Fritz, B. and Tardy, Y., 1977 Geochemical behavior of silica and magnesium during the evaporation of waters in Chad Chem. Geol. 19 215228.CrossRefGoogle Scholar
Hower, J. and Mowatt, T. C., 1966 The mineralogy of illites and mixed-layer illite/montmorillonites Amer. Mineral. 51 825854.Google Scholar
Jones, B. F., Eugster, H. P. and Rettig, S. L., 1977 Hydrochemistry of the Lake Magadi Basin, Kenya Geochim. Cosmochim. Acta 41 5372.CrossRefGoogle Scholar
Jones, B. F. and Van Denburgh, A. S., 1966 Geochemical influences on the chemical character of closed lakes Symposium of Garda, Hydrology of Lakes and Reservoirs 70 435446.Google Scholar
Jones, B. F., Van Denburgh, A. S., Truesdell, A. H. and Rettig, S. L., 1969 Interstitial brines in playa sediments Chem. Geol. 4 253262.CrossRefGoogle Scholar
Millot, G., 1949 Relations entre la constitution et la genèse des roches sédimentaires argileuses .Google Scholar
Millot, G., 1964 Géologie des Argiles .Google Scholar
Pedro, G., Carmouze, J. P. and Velde, B., 1978 Peloidal nontronite formation in recent sediments of Lake Chad Chem. Geol. 23 139149.CrossRefGoogle Scholar
Phillips, K. N. and Van Denburgh, A. S., 1971 Hydrology and geochemistry of Abert, Summer, and Goose Lakes, and other closed-basin lakes in south-central Oregon U.S. Geol. Surv. Prof. Pap. .CrossRefGoogle Scholar
Reynolds, R. C. Jr., Brindley, G. W. and Brown, G., 1980 Interstratifled clay minerals Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 249303.CrossRefGoogle Scholar
Reynolds, R. C. Jr. and Hower, J., 1970 The nature of interlayering in mixed-layer illite-montmorillonites Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Losung Z. Pflanzenernahr. Dung. Bodenkunde 105 194202.CrossRefGoogle Scholar
Shapiro, L. (1975) Rapid analysis of silicate, carbonate, and phosphate rocks—revised edition: U.S. Geol. Surv. Bull. 1401, 76 pp.Google Scholar
Singer, A. and Stoffers, P., 1980 Clay mineral diagenesis in two East African lake sediments Clay Mineral. 15 291307.CrossRefGoogle Scholar
Tettenhorst, R., Moore, G. E. Jr., 1978 Stevensite oolites from the Green River Formation of central Utah J. Sed. Pet. 48 587594.Google Scholar
Van Denburgh, A. S., 1975 Solute balance at Abert and Summer Lakes, south-central Oregon U.S. Geol. Surv. Prof. Pap. .CrossRefGoogle Scholar
Walker, G. W., 1963 Reconnaissance geologic map of the eastern half of the Klamath Falls (AMS) Quadrangle, Lake and Klamath Counties, Oregon U.S. Geol. Surv. Mineral Inv. Field Studies Map .Google Scholar
Velde, B., Weir, A.H., Mortland, M. M. and Farmer, V. C., 1979 Synthetic illite in the chemical system K2O-Al2O3-SiO2-nH2O at 300°C and 2 kb Proc. 6th Internat. Clay Conf., Oxford, 1978 New York Elsevier 395404.Google Scholar