Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:53:51.925Z Has data issue: false hasContentIssue false

Clay Mineralogy and Illite Crystallinity of the Atoka Formation, Arkoma Basin, and Frontal Ouachita Mountains

Published online by Cambridge University Press:  28 February 2024

Christoph Spötl*
Affiliation:
Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211
David W. Houseknecht*
Affiliation:
Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211
Robert Jaques
Affiliation:
Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211
*
1Present address: Münzergasse 2, 6060 Hall in Tirol, Austria.
2Present address: U.S. Geological Survey, 915 National Center Reston, Virginia 22092.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clay mineralogy (including illite crystallinity) was studied in Pennsylvanian synorogenic sediments (Atoka Formation) in the subsurface of the Arkoma Basin and the adjacent Ouachita thrust belt. Vitrinite reflectance values range from ≥0.8% at the surface up to as high as 4.7% Ro at the base of the Atoka Formation. The mineralogy of the <2 µm fraction of the mudrocks is fairly monotonous and composed of illite (<10% interstratified smectite), Fe-chlorite, kaolinite, quartz, and traces of feldspars. Kaolinite is common at shallow levels and “disappears” in most wells at a thermal maturity of 1.9–2.1% Ro, suggesting its possible use as an independent paleothermal indicator in this basin. Illite crystallinity (IC) values are fairly high (0.3–0.5° 2θ) and show little variation throughout the entire maturity range. In addition, no relation was observed between vitrinite reflectance and illite crystallinity, indicating that IC is not a useful paleothermal indicator in these rocks. Illite is almost exclusively of the 2M1 polytype, suggesting a predominantly detrital origin. Incipient metamorphic and low-grade metamorphic mudrocks in the Ouachita thrust belt to the east of the Arkoma Basin are regarded as the source rocks for the clays of the Atoka Formation. Rapid transportation and deposition by turbidity currents probably played a key role in protecting these unweathered micas from pervasive alteration in the terrestrial environment.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Arne, D. C., 1992 Evidence from apatite fission-track analysis for regional Cretaceous cooling in the Ouachita mountain fold belt and Arkoma Basin of Arkansas Amer. Ass. Petrol. Geol. Bull. 76 392402.Google Scholar
Bailey, S. W., Brindley, G. W. and Brown, G., 1984 Structures of layer silicates Crystal Structures of Clay Minerals and Their X-Ray Identification, Vol. 5 London Mineralogical Society Monograph Mineralogical Society 1124.Google Scholar
Barker, C. E. and Goldstein, R. H., 1990 Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer Geology 18 10031006 10.1130/0091-7613(1990)018<1003:FITFDM>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Blenkinsop, T. G., 1988 Definition of low-grade metamorphic zones using illite crystallinity J. Metamorphic Geol. 6 623636 10.1111/j.1525-1314.1988.tb00444.x.CrossRefGoogle Scholar
Deming, D., Nunn, J. A., Jones, S., Chapman, D. S., Nuccio, V. F. and Barker, C. E., 1990 Some problems in thermal history studies Applications of Thermal Maturity Studies to Energy Exploration Denver SEPM Rocky Mountain Section 6180.Google Scholar
Denison, R. E., 1982 Ages of Ouachita metamorphism Geol. Soc. Amer. Annual Meeting 14 475.Google Scholar
Denison, R. E., Burke, W. H., Otto, J. B., Hetherington, E. A. and Stone, C. G., 1977 Age of igneous and metamorphic activity affecting the Ouachita foldbelt Symposium on the Geology of the Quachita Mountains, Vol. I Little Rock Arkansas Geol. Comm. 25 10.Google Scholar
Desborough, G. A., Zimmermann, R. A., Elrick, M. and Stone, C., 1985 Early Permian thermal alteration of Carboniferous strata in the Ouachita region and Arkansas river valley, Arkansas Geol. Soc. Amer. Annual Meeting 19 155.Google Scholar
Dorsey, R. J., Buchovecky, E. J. and Lundberg, N., 1988 Clay mineralogy of Pliocene-Pleistocene mudstones, eastern Taiwan: Combined effects of burial diagenesis and provenance unroofing Geology 16 944947 10.1130/0091-7613(1988)016<0944:CMOPPM>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Drever, J. I., 1973 The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique Amer. Mineral. 58 553554.Google Scholar
Frey, M. and Frey, M., 1987 Very low-grade metamorphism of clastic sedimentary rocks Low Temperature Metamorphism Glasgow Blackie 1358.Google Scholar
Frey, M., 1988 Discontinuous inverse metamorphic zo-nation, Glarus Alps, Switzerland: Evidence from illite “crystallinity” data Schweiz. Mineral. Petrogr. Mitt. 70 171183.Google Scholar
Ge, S. and Garven, G., 1992 Hydromechanical modeling of tectonically driven groundwater flow with application to the Arkoma foreland basin J. Geophys. Res. 97 B6 91199144 10.1029/92JB00677.CrossRefGoogle Scholar
Graham, S. A., Ingersoll, R. V. and Dickinson, W. R., 1976 Common provenance for lithic grains in Carboniferous sandstones from Ouachita Mountains and Black Warrior basin J. Sed. Petrol. 46 620623.Google Scholar
Guthrie, J. M., Houseknecht, D. W. and Johns, W. D., 1986 Relationship among vitrinite reflectance, illite crystallinity, and organic geochemistry in Carboniferous strata, Ouachita Mountains, Oklahoma and Arkansas Amer. Ass. Petrol. Geol. Bull. 70 2633.Google Scholar
Héroux, Y., Chagnon, A. and Bertrand, R., 1979 Compilation of correlation of major thermal maturity indicators Amer. Ass. Petrol. Geol. Bull. 63 21282144.Google Scholar
Houseknecht, D. W., 1986 Evolution from passive margin to foreland basin: The Atoka Formation of the Arkoma basin, south-central U.S.A. Spec. Publ. Int. Ass. Sedim. 8 327345.Google Scholar
Houseknecht, D. W., (1987) The Atoka Formation of the Arkoma Basin: Tectonics, Sedimentology, Thermal Maturity, Sandstone Petrology: Tulsa Geol. Soc. Short Course Notes, 1987, 72 pp.Google Scholar
Houseknecht, D. W., Hathon, L. A., and McGilvery, T. A., (1992) Thermal maturity of Paleozoic strata in the Arkoma basin; in Source Rocks in the Southern Midcontinent, 1990 Symposium, Vol. 93, Johnson, K. S., and Cardott, B. J., eds., Oklahoma Geol. Survey Circ. 122132.Google Scholar
Houseknecht, D. W., Bensley, D. F., Hathon, L. A. and Kastens, P. H., 1993 Rotational reflectance properties of Arkoma basins dispersed vitrinite: Insights for understanding reflectance populations in high thermal maturity regions Org. Geochem. 20 187196 10.1016/0146-6380(93)90037-C.CrossRefGoogle Scholar
Houseknecht, D. W., and Ross, L. M., (1992) Clay minerals in Atokan deep-water sandstone facies, Arkoma basin: Origins and influence on diagenesis and reservoir quality: in Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones, Vol. 47, Houseknecht, D. W., and Pittman, E. D., eds., SEPM Spec. Publ. 227240.CrossRefGoogle Scholar
Houseknecht, D. W., and Spötl, C., (1993) Empirical observations regarding methane “deadlines” in deep basins and thrust belts: U.S. Geol. Survey Prof. Paper (in press).Google Scholar
Hunziker, J. C., Frey, M., Clauer, N., Dallmeyer, R. D., Fried-richsen, H., Flehmig, W. and Hochstrasser, K., 1986 The evolution of illite to muscovite: Mineralogical and isotopic data from the Glarus Alps, Switzerland Contrib. Mineral. Petrol. 92 157180 10.1007/BF00375291.CrossRefGoogle Scholar
Kisch, H. J., (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks: in Diagenesis of Sediments and Sedimentary Rocks, Vol. 25B, Larsen, G., and Chilingar, G. V., eds., Developments in Sedimentology, 289493.Google Scholar
Kisch, H. J. and Frey, M., 1987 Correlation between indicators of very low-grade metamorphism Low Temperature Metamorphism Glasgow Blackie 227300.Google Scholar
Kisch, H. J., 1990 Calibration of the anchizone: A critical comparison of illite “crystallinity” scales used for definition J. Metamorphic Geol. 8 3146 10.1111/j.1525-1314.1990.tb00455.x.CrossRefGoogle Scholar
Kisch, H. J., 1991 Illite crystallinity: Recommendations on sample preparation, x-ray diffraction settings, and interla-boratory samples J. Metamorphic Geol. 9 665670 10.1111/j.1525-1314.1991.tb00556.x.CrossRefGoogle Scholar
Kisch, H. J., Frey, M. and Frey, M., 1987 Effect of sample preparation on the measured 10Å peak width of illite (illite “crystallinity”) Low Temperature Metamorphism Glasgow Blackie 301304.Google Scholar
Kübler, B., (1966) La cristallinité de l’illite et les zones tout a fait supérieures du métamorphisme, in Collegue sur les Étages Tectoniques, Schaer, J. P., éd., Neuchâtel, 105122.Google Scholar
Kübler, B., 1990 “Cristallinité” de l’illite et mixed-layers: Brève révision Schweiz. Minerai. Petrogr. Mitt. 70 8993.Google Scholar
Landis, C. A., 1971 Graphitization of dispersed carbonaceous material in metamorphic rocks Contrib. Mineral. Petrol. 30 3445 10.1007/BF00373366.CrossRefGoogle Scholar
Lanson, B. and Champion, D., 1991 The I/S-to-illite reaction in the late stage diagenesis Am. J. Sci. 291 473506 10.2475/ajs.291.5.473.CrossRefGoogle Scholar
Leach, D. L. and Rowan, E. L., 1986 Genetic link between Ouachita foldbelt tectonism and the Mississippi Valley-type lead zinc deposits of the Ozarks Geology 14 931935 10.1130/0091-7613(1986)14<931:GLBOFT>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Mack, G. H., Thomas, W. A. and Horsey, C. A., 1983 Composition of Carboniferous sandstones and tectonic framework of southern Appalachian-Ouachita orogen J. Sed. Petrol. 53 931946.Google Scholar
Maxwell, D. T. and Hower, J., 1967 High-grade diagenesis and low-grade metamorphism of illite in the Precambrian belt series Amer. Mineral. 52 843857.Google Scholar
Monnier, F., 1982 Thermal diagenesis in the Swiss molasse basin: Implications for oil generation Can. J. Earth Sci. 19 328342 10.1139/e82-025.CrossRefGoogle Scholar
Moore, D. M. and Reynolds, R. C., 1989 X-Ray Diffraction and the Identification and A nalysis of Clay Minerals Oxford Oxford Univ. Press.Google Scholar
Morris, R. C., Hatcher, R. D., Thomas, W. A. and Viele, G. W., 1989 Stratigraphy and sedimentary history of post-Arkansas Novaculite Carboniferous rocks of the Ouachita Mountains The Appalachian-Ouachita Orogen in the United States, Vol. F-2 Boulder Geol. Soc. Amer. 591602.Google Scholar
Mukhamet-Galeyev, A. P., Pokrovskiy, V. A., Zotov, A. V., Ivanov, I. P. and Samotoin, N. D., 1985 Kinetics and mechanism of hydrothermal crystallization of 2M1 muscovite: An experimental study Intern. Geol. Rev. 27 13521364 10.1080/00206818509466511.CrossRefGoogle Scholar
Naeser, N. D. and Mcculloh, T. H., 1989 Thermal History of Sedimentary Basins. Methods and Case Histories New York Springer 10.1007/978-1-4612-3492-0.CrossRefGoogle Scholar
Nicholas, R. L., Waddell, D. E., Hatcher, R. D., Thomas, W. A. and Viele, G. W., 1989 The Ouachita system in the subsurface of Texas, Arkansas, and Louisiana The Appalachian-Ouachita Orogen in the United States, Vol. F-2 Boulder Geol. Soc. Amer. 661672.Google Scholar
Ogunyomi, O., Hesse, R. and Herouz, Y., 1980 Pre-orogenic and synorogenic diagenesis and anchimetamorphism in lower Paleozoic continental margin sequences of the northern Appalachians in and around Quebec City, Canada Bull. Canad. Petrol. Geol. 28 559577.Google Scholar
Pollastro, R. M., 1993 Considerations and applications of illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age Clays & Clay Minerals 41 119133 10.1346/CCMN.1993.0410202.CrossRefGoogle Scholar
Reynolds, R. C., (1985) NEWMOD©. A Computer Program for the Calculation of One-Dimensional Diffraction Patterns of Mixed-Layered Clays: R. C. Reynolds Jr., Hanover, New Hampshire.Google Scholar
Robert, P., 1988 Organic Metamorphism and Geothermal History Dordrecht Elf-Aquitaine and D. Reidel Publ. Comp..Google Scholar
Robinson, D., Warr, L. N. and Bevins, R. E., 1990 The illite “crystallinity” technique: A critical appraisal of its precision J. Metamorphic Geol. 8 333344 10.1111/j.1525-1314.1990.tb00476.x.CrossRefGoogle Scholar
Sutherland, P. K., 1988 Late Mississippian and Pennsyl-vanian depositional history in the Arkoma basin area, Oklahoma and Arkansas Geol. Soc. Amer. Bull. 100 17871802 10.1130/0016-7606(1988)100<1787:LMAPDH>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Teichmüller, M., Teichmüller, R. and Weber, K., 1979 Inkohlung und Illit-Kristallinität. Vergleichende Untersuchungen im Mesozoikrum und Paläozoikum von Westfalen Fortschritte Geol. Rheinland Westfalen 27 201276.Google Scholar
Thomas, W. A., Hatcher, R. D., Thomas, W. A. and Viele, G. W., 1989 The Appalachian-Ouachita orogen beneath the Gulf coastal plain between the outcrops in the Appalachians and Ouachita Mountains The Appala-chian-Ouachita Orogen in the United States, Vol. F-2 Boulder Geol. Soc. Amer. 537553.Google Scholar
Viele, G. W., Thomas, W. A., Hatcher, R. D., Thomas, W. A. and Viele, G. W., 1989 Tectonic synthesis of the Ouachita orogenic belt The Appalachian-Ouachita Orogen in the United States, Vol. F-2 Boulder Geol. Soc. Amer. 695728.Google Scholar
Waples, D. W., Suizu, M. and Kamata, H., 1992 The art of maturity modeling. Part 2: Alternative models and sensitivity analysis Amer. Ass. Petrol. Geol. Bull. 76 4766.Google Scholar
Weaver, C. E., 1960 Possible uses of clay minerals in search for oil Amer. Ass. Petrol. Geol. Bull. 44 15051518.Google Scholar
Weaver, C. E., (1961) Clay minerals of the Ouachita structural belt and adjacent foreland: in The Ouachita System, Vol. 6120, Flawn, P. T., Goldstein, A., King, P. B., and Weaver, C. E., eds., Univ. of Texas Bureau of Econ. Geology Publications, 147162.Google Scholar
Wilcoxon, B. R., Ferrell, R. E., Sassen, R. and Wade, W. J., 1990 Illite polytype distribution as an inorganic indicator of thermal maturity in the Smackover Formation of the Manila Embayment, southwest Alabama Org. Geochem. 15 18 10.1016/0146-6380(90)90180-8.CrossRefGoogle Scholar
Yang, C. and Hesse, R., 1991 Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, external domain of southern Canadian Appalachians Clay Minerals 26 211231 10.1180/claymin.1991.026.2.06.CrossRefGoogle Scholar
Zachry, D. L., (1983) Sedimentologic framework of the Atoka Formation, Arkoma basin, Arkansas: in Tectonic-Sedimentary Evolution of the Arkoma Basin, Vol. 1, Houseknecht, D. W., ed., SEPM Midcontinent Section, 3452.Google Scholar