Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T09:20:03.854Z Has data issue: false hasContentIssue false

Clay mineral formation during podzolization in an alpine environment of the Tatra Mountains, Poland

Published online by Cambridge University Press:  01 January 2024

Michał Skiba*
Affiliation:
Institute of Geological Sciences, Jagiellonian University, ul. Oleandry 2a, 30-063 Kraków, Poland
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The processes of clay mineral formation were studied in seven podzol profiles developed on granitic regoliths in the Polish part of the Tatra Mountains. The selected profiles have similar parent material and macroscopically represent different stages of soil development (from initial to advanced). Bulk soil material (<2 mm fraction) and separated clay fractions (<2 µm) were studied using a petrographic microscope, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy-energy-dispersive spectrometry methods. The mineral compositions of the bulk soil samples are more or less the same (quartz, feldspars, mica and minor amounts of other phyllosilicates). The clay fractions are composed of mica and mixed-layer minerals which contain hydrated interlayers of vermiculitic and/or smectitic type, and kaolinite. Smaller amounts of chlorite, feldspars and quartz were also identified. Chlorite is present almost exclusively (except for one profile) in lower soil horizons (C, B/C, B). The amount of minerals with hydrated interlayers increases up the profiles. Kaolinite is present in all the samples except for the lowermost soil horizons (C) of two of the profiles. In some of the B horizons, the formation of hydroxy interlayers within hydrated interlayers is observed. The main processes of clay mineral formation recognized in the soils studied are: inheritance from the parent rocks; crystallization of kaolinite from soil solutions; the formation of dioctahedral vermiculite at the expense of inherited dioctahedral mica, and the formation of dioctahedral smectite at the expense of vermiculite. The recognized sequence of transformation is as follows: M → R0 M-V (12 Å or 14 Å) → R0 M-12 Å V → R1 M-12 Å V → 12 Å V → V-S → S. Observed formation of hydroxy interlayers seems to be pH dependent, starting when the pH ⩾ 4.4. The process of dissolution of primary silicates occurring simultaneously with the transformation is also documented.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

April, R.H. Keller, D.C. and Driscoll, T., (2004) Smectite in spodosols from the Adirondack Mountains of New York Clay Minerals 39 99113 10.1180/0009855043910123.CrossRefGoogle Scholar
Bain, D.C., (1977) The weathering of ferruginous chlorite in a podzol from Argyllshire, Scotland Geoderma 17 193208 10.1016/0016-7061(77)90050-7.CrossRefGoogle Scholar
Bain, D.C. and Fraser, A.R., (1994) An unusually interlayered clay mineral from the eluvial horizon of a humus-iron podzol Clay Minerals 29 6976 10.1180/claymin.1994.029.1.08.CrossRefGoogle Scholar
Bain, D.C. Mellor, A. and Wilson, M.J., (1990) Nature and origin of an aluminous vermiculitic weathering product in acid soils from upland catchments in Scotland Clay Minerals 25 467475 10.1180/claymin.1990.025.4.05.CrossRefGoogle Scholar
Bednarek, R. Charzyński, P. and Pokojska, U., (2003) World Reference Base for Soil Resources Poland Food and Agriculture Organization of the United Nations, Polish Soil Science Society, Toruñ 106 pp.Google Scholar
Bennett, P. and Siegel, D.I., (1987) Increased solubility of quartz in water due to complexing by organic compounds Nature 326 685686.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., (1980) Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 495 pp.CrossRefGoogle Scholar
Burkins, D.L. Blum, J.D. Brown, K. Reynolds, R.C. and Erel, Y., (1999) Chemistry and mineralogy of a granitic, glacial soil chronoseqence, Sierra Nevada Mountains, California Chemical Geology 162 114 10.1016/S0009-2541(99)00074-1.CrossRefGoogle Scholar
Carnicelli, S. Mirabella, A. Cecchini, G. and Sanesi, G., (1997) Weathering of chlorite to a low-charge expandable mineral in a spodosol on the Apennine Mountains, Italy Clays and Clay Minerals 45 2841 10.1346/CCMN.1997.0450104.CrossRefGoogle Scholar
Dixon, J.B., Dixon, J.B. and Weed, S.B., (1989) Kaolin and serpentine group minerals Minerals in Soil Environments 2nd Madison, Wisconsin Soil Science Society of America 467525.CrossRefGoogle Scholar
Egli, M. Mirabella, A. and Fitze, P., (2001) Clay mineral formation in soils of two different chronosequences in the Swiss Alps Geoderma 104 145175 10.1016/S0016-7061(01)00079-9.CrossRefGoogle Scholar
Egli, M. Mirabella, A. Sartori, G. and Fitze, P., (2003) Weathering rates as a function of climate: results from a climosequence of Val Genova (Trentino, Italian Alps) Geoderma 111 99121 10.1016/S0016-7061(02)00256-2.CrossRefGoogle Scholar
Egli, M. Zanelli, R. Kahr, G. Mirabella, A. and Fitze, P., (2002) Soil evolution and development of the clay mineral assemblages of a podzol and a cambisol in ‘Maggerwald’, Switzerland Clay Minerals 37 351366 10.1180/0009855023720039.CrossRefGoogle Scholar
Farmer, V.C. Russell, J.D. and Berrow, M.L., (1980) Imogolite and proto-imogolite allophane in spodic horizons: evidence for a mobile aluminium silicate complex in podzol formation Journal of Soil Science 31 673684 10.1111/j.1365-2389.1980.tb02113.x.CrossRefGoogle Scholar
Fordham, A.W., (1990) Weathering of biotite into dioctahedral clay minerals Clay Minerals 25 5163 10.1180/claymin.1990.025.1.06.CrossRefGoogle Scholar
Fordham, A.W., (1990) Formation of trioctahedral illite from biotite in a soil profile over granite gneiss Clays and Clay Minerals 38 187195 10.1346/CCMN.1990.0380210.CrossRefGoogle Scholar
Ghabru, S.K. Mermut, A.R. and St. Arnaud, R.J., (1990) Isolation and characterization of an iron-rich chlorite-like mineral from soil clays Soil Science Society of America Journal 54 281287 10.2136/sssaj1990.03615995005400010045x.CrossRefGoogle Scholar
Gillot, F. Righi, D. and Elsass, F., (2000) Pedogenic smectites in podzols from Central Finland: an analytical electron microscopy study Clays and Clay Minerals 48 655664 10.1346/CCMN.2000.0480607.CrossRefGoogle Scholar
Gillot, F. Righi, D. and Räisänen, M.L., (2001) Layer-charge evaluation of expandable clays from chronosequence of podzols in Finland using an alkylammonium method Clay Minerals 36 571584 10.1180/0009855013640010.CrossRefGoogle Scholar
Gorbunov, N.I. Prusinkiewicz, Z. and Gradusow, B.P., (1963) Obrazowanije glinistych mineralow w podzolistych poćwach na piescianych porodach raznowo wozrasta Poćwowjedienie 8 4857 (in Russian).Google Scholar
Gustafsson, J.P. Bhattacharya, P. Bain, D.C. Fraser, A.R. and McHardy, W.J., (1995) Podzolisation mechanism and the synthesis of imogolite in northern Scandinavia Geoderma 66 167184 10.1016/0016-7061(95)00005-9.CrossRefGoogle Scholar
Hoffland, E. Giesler, R. Jongmans, T. and van Breemen, N., (2002) Increasing feldspar tunneling by fungi across a north Sweden podzol chronosequence Ecosystems 5 1122 10.1007/s10021-001-0052-x.CrossRefGoogle Scholar
Jackson, M.L., (1969) Soil Chemical Analysis. Advanced Course 2nd Madison, Wisconsin Published by the author 895 pp.Google Scholar
Klimaszewski, M., (1988) Rzezba Tatr Polskich Warszawa, Poland Państwowe Wydawnictwo Naukowe 668 pp. (in Polish).Google Scholar
Kodama, H. and Brydon, J.E., (1966) Interstratified montmorillonite-mica clays from sub-soils of the Prairie Provinces, Western Canada Clays and Clay Minerals 13 15173.Google Scholar
Konecka-Betley, K. Czępińska-Kamin&acúska, D. and Janowka, E., (1999) Systematyka i Kartografia Gleb Poland Wydawnictwo SGGW, Warszawa (in Polish).Google Scholar
Kubisz, J. and Oleksynowa, K., (1972) Produkty przeobrażenia minerałów krzemianowych w glebie z Krzyżnego (Tatry) Sprawozdania z posiedzeń Komisji Naukowej Oddział PAN w Krakowie 16 530531 (in Polish).Google Scholar
Lin, C.-W. Hseu, Z.-Y. and Chen, Z.-S., (2002) Clay mineralogy of Spodosols with high clay contents in the subalpine forests of Taiwan Clays and Clay Minerals 50 726735 10.1346/000986002762090254.CrossRefGoogle Scholar
Lundström, U.S. van Breemen, N. and Bain, D.C., (2000) The podzolisation process. A review Geoderma 94 91107 10.1016/S0016-7061(99)00036-1.CrossRefGoogle Scholar
Lång, L.-O. and Stevens, R.L., (1996) Weathering variability and aluminium interlayering: clay mineralogy of podzol profiles in till and glaciofluvial, SW Sweden Applied Geochemistry 11 8792 10.1016/0883-2927(95)00104-2.CrossRefGoogle Scholar
Madejová, J., (2003) FTIR techniques in clay minerals studies Vibrational Spectroscopy 31 110 10.1016/S0924-2031(02)00065-6.CrossRefGoogle Scholar
Manecki, A. Michalik, M. Obidowicz, A. and Wilczyńska-Michalik, W., (1978) Charakterystyka mineralogiczna i palinologiczna pyłów eolicznych z opadów w Tatrach w latach 1973 i 1974 Prace Mineralogiczne 57 1960 (in Polish).Google Scholar
Mason, B., (1960) Principles of Geochemistry 2nd New York John Wiley and Sons Inc. 310 pp.Google Scholar
McDaniels, P.A. Falen, A.L. Tice, K.R. Graham, R.C. and Fendorf, S.E., (1995) Beidellite in E horizons of northern Idaho spodosols formed in volcanic ash Clays and Clay Minerals 43 525532 10.1346/CCMN.1995.0430502.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L., (1960) Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals, Proceedings of the 7th National Conference Oxford, UK Pergamon Press 317327.Google Scholar
Melkerud, P.-A. Bain, D.C. Jongmans, A.G. and Tarvainen, T., (2000) Chemical, mineralogical and morphological characterisation of three podzols developed on glacial deposits in Northern Europe Geoderma 94 125148 10.1016/S0016-7061(99)00043-9.CrossRefGoogle Scholar
Michalik, M. Uchman, A., Skiba, S. and Kotarba, A., (1998) Podłoże geologiczne Gleby Ochrona przyrody nieożywionej i gleb, operat szczegółowy, Część I. Charakterystyka Zasobów Przyrody Nieożywione i Gleb Poland The Tatra National Park Archives 935 (in Polish).Google Scholar
Mirabella, A. Egli, M. Carnicelli, S. and Sartori, G., (2002) Influence of parent material on clay minerals formation in podzols of Trentino Italy Clay Minerals 37 699707 10.1180/0009855023740071.CrossRefGoogle Scholar
Mystkowski, K., (1999) ClayLab, a computer program for processing and interpretation of X-ray diffractograms of clays Conference of European Clay Groups Association, EUROCLAY 1999. Book of abstracts Poland Krakow 114115.Google Scholar
Niedźwiedź, T., (1992) Climate of the Tatra Mountains Mountain Research and Development 12 131146 10.2307/3673787.CrossRefGoogle Scholar
Ohashi, H. and Nakazawa, H., (1996) The microstructure of humic acid-montmorillonite composites Clay Minerals 31 347354 10.1180/claymin.1996.031.3.05.CrossRefGoogle Scholar
Oleksynowa, K. and Skiba, S., (1976) Geochemical characterization of a polygonal soil on the flattening of Krzyżne Pass in the Tatra Mts Studia Geomorphologica Carpatho-Balcanica 10 2747.Google Scholar
Palomino, M.A. and Santamarina, J.C., (2005) Fabric map for kaolinite: effects of pH and ionic concentration on behavior Clays and Clay Minerals 53 211223 10.1346/CCMN.2005.0530302.CrossRefGoogle Scholar
Passendorfer, E., (1971) Jak powstały Tatry 10th Warszawa, Poland Wydawnictwa Geologiczne 279 pp. (in Polish).Google Scholar
Prusinkiewicz, Z., (1994) Leksykon Ekologiczno-gleboznawczy Warszawa, Poland Państwowe Wydawnictwo Naukowe 288 (in Polish).Google Scholar
Reynolds, R.C., (1971) Clay mineral formation in an alpine environment Clays and Clay Minerals 19 361374 10.1346/CCMN.1971.0190604.CrossRefGoogle Scholar
Reynolds, R.C. Jr. (1985) () NEWMOD ©, a computer Program for the Calculation of One-dimensional Diffraction Patterns of Mixed-Layered Clays. R.C. Reynolds, Jr., 8 Brook Drive, Hanover, New Hampshire, USA.Google Scholar
Righi, D. and Elsass, F., (1996) Characterization of soil clay minerals: decomposition of X-ray diffraction diagrams and high-resolution electron microscopy Clays and Clay Minerals 44 791800 10.1346/CCMN.1996.0440610.CrossRefGoogle Scholar
Righi, D. Petit, S. and Bouchet, A., (1993) Characterization of hydroxy-interlayered vermiculite and illite/smectite interstratified minerals from the weathering of chlorite in a cryorthod Clays and Clay Minerals 41 484495 10.1346/CCMN.1993.0410409.CrossRefGoogle Scholar
Righi, D. Räisänen, M.L. and Gillot, F., (1997) Clay mineral transformations in podzolized tills in central Finland Clay Minerals 32 531544 10.1180/claymin.1997.032.4.04.CrossRefGoogle Scholar
Righi, D., Gillot, F., Elsass, F. and Petit, S. (1997b) Transformation of smectite in two contrasted soil environments. Pp. 5961 in: Journees Scientifiques en l’Honneur de V.A. Drits, Programme et Resumes, Paris.Google Scholar
Righi, D. Huber, K. and Keller, C., (1999) Clay formation and podzol development from postglacial moraines in Switzerland Clay Minerals 34 319332 10.1180/000985599546253.CrossRefGoogle Scholar
Skiba, M., (2001) The origin of kaolinite from the Tatra Mts. podzols Mineralogia Polonica 32 6777.Google Scholar
Skiba, M. and Skiba, S., (2005) Chemical and mineralogical podzolization indicators — on the example of soils formed from granitoids Polish Journal of Soil Science 38 153161.Google Scholar
Skiba, S., (1977) Studia nad glebami wytworzonymi w różnych piętrach klimatyczno-roślinnych krystalicznej części Tatr polskich Roczniki Gleboznawcze 27 205241.Google Scholar
Skiba, S., Skiba, S. and Kotarba, A., (1998) Gleby Ochrona przyrody nieożywionej i gleb, operat szczegółowy, Część I. Charakterystyka Zasobów Przyrody Nieożywionej i Gleb Poland The Tatra National Park Archives 121147 (in Polish).Google Scholar
Šucha, V. Środoń, J. Clauer, N. Elsass, F. Eberl, D.D. Kraus, I. and Madejová, J., (2001) Weathering of smectite and illite-smectite under temperate climatic conditions Clay Minerals 36 403419 10.1180/000985501750539490.CrossRefGoogle Scholar
Środoń, J., (1999) Use of clay minerals in reconstructing geological processes: recent advances and some perspectives Clay Minerals 34 2737 10.1180/000985599546046.CrossRefGoogle Scholar
Theng, B.K.G. Churchman, G.J. and Newman, R.H., (1986) The occurrence of interlayer clay-organic complexes in two New Zealand soils Soil Science 142 262266 10.1097/00010694-198611000-00003.CrossRefGoogle Scholar
Van Breemen, N. Lundström, U.S. and Jongmans, A.G., (2000) Do plants drive podzolization via rock-eating mycorrhizal fungi? Geoderma 94 163171 10.1016/S0016-7061(99)00050-6.CrossRefGoogle Scholar
Weaver, C.E., (1989) Clays, Muds and Shales Amsterdam Elsevier.Google Scholar
Weber, J. Garcia-Gonzales, T.M. and Dradrach, A., (1998) Sklad mineralogiczny bielic wytworzonych z granitów w karkonoskim piętrze subalpejskim w rejonie występowania klęski ekologicznej Zeszyty Problemowe Postępów Nauk Rolniczych 464 251259 (in Polish).Google Scholar
Wilson, M.J., (1999) The origin and formation of clay minerals in soils: past, present and future perspectives Clay Minerals 34 725 10.1180/000985599545957.CrossRefGoogle Scholar
Wilson, M.J. Bain, D.C. and Duthie, D.M.L., (1984) The soil clays of Great Britain: II. Scotland Clay Minerals 19 709735 10.1180/claymin.1984.019.5.03.CrossRefGoogle Scholar