Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T21:31:35.510Z Has data issue: false hasContentIssue false

Classification of Kaolins Exemplified by Their Textures in Scan Electron Micrographs

Published online by Cambridge University Press:  01 July 2024

W. D. Keller*
Affiliation:
University of Missouri-Columbia, Columbia, Missouri 65201
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Varieties of kaolin, a rock, may be classified geologically, mineralogically, crystallographically, genetically, texturally, morphologically, by industrial use, and in other ways which are desired. In this paper, the first-order of classification used is geological, i.e., transported and residual, after which other categories are used as subdivisions.

Scan electron micrographs, SEM, of the textures of kaolin show that distinctive textures characterize the several categories of classification. Varieties in texture of kaolin include similarities to those typical of sedimentary, igneous and metamorphic rocks. Because word descriptions of the textures are inadequate in comparison to pictures of them, the reader is referred to the micrographs.

SEM's illustrate differences between kaolins which were transported, formed, or deposited from solution, a colloidal phase, or as orthodox clastic particles. The parent source of kaolin deposited, or “grown,” from solution may be difficult to ascertain. It is suggested that the total role of solution work in kaolin petrology can be more important than has ordinarily been credited.

Резюме

Резюме

Разновидности каолина,горной породы,могут быть классифицированы по геологическим,минералогическим,кристаллографическим,генетическим,структурным и морфологическим признакам,по промышленному использованию и другим показателям. В этой статье геологическая классификация используется в качестве основной,т.е.разновидности каолина подразделяются на привнесенные и остаточные, в то время как другие категории используются в качестве более мелких подразделений.

Микроснимки структур каолина,сделанные с помощью развертывающего электронного микроскопа,показывают,что четкие структуры определяют несколько классификационных категорий.Разновидности структур каолина подобны типичным структурам осадочных,изверженных и метаморфических пород.Поскольку словесные описания стрктур не адекватны визуальным наблюдениям,в статье приводятся микроснимки.

Микроснимки иллюстрируют различия между каолинами,которые были привнесены, сформированы или отложились из коллоидальной фазы раствора или в виде обычных обломочных частиц.Первоисточник каолина,отложенного,или "рожденного" раствором,вероятно,установить трудно.Предполагается,что в целом роль деятельности раствора в петрологии каолина более важна,чем обычно принято думать.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Baumanu, D. and Keller, W. D. (1975) Bulk densities of selected dried natural and fired kaolin clays: Clays & Clay Minerals 23, 424427.CrossRefGoogle Scholar
Blaxland, A. B. (1974) Geochemistry and geochronology of chemical weathering, Butler Hill Granite, Missouri: Geochim. Cosmochim. Acta 38, 843852.CrossRefGoogle Scholar
Bristow, C. M. (1977) A review of the evidence for the origin of the kaolin deposits in S.W. England: Proc. VIII Int. Kaolin Symp., Madrid-Rome. 19 pp.Google Scholar
Hayes, J. B. (1963) Kaolinite from Warsaw geodes, Keokuk region, Iowa: Iowa Acad. Sci. 70, 261272.Google Scholar
Hayes, J. B. (1967) Dickite in Lansing Group (Pennsylvania) limestones, Wilson and Montgomery Counties, Kansas: Am. Mineral. 52, 890896.Google Scholar
Keller, W. D. (1963) Hydrothermal kaolinization (endellitization) of volcanic glassy rock: Proc. 10th Conf. Clays & Clay Minerals, 333343.Google Scholar
Keller, W. D. (1968) Principles of Chemical Weathering: Lucas Bros. Publ., Columbia, Mo., 111 pp.Google Scholar
Keller, W. D. (1968) Flint clay and a flint-clay facies: Clays & Clay Minerals 16, 113128.CrossRefGoogle Scholar
Keller, W. D. (1970) Environmental aspects of clay minerals: J. Sediment. Petrol. 40, 788813.CrossRefGoogle Scholar
Keller, W. D. (1976) Scan electron micrographs of kaolins collected from diverse environments of origin—I: Clays & Clay Minerals 24, 107113.CrossRefGoogle Scholar
Keller, W. D. (1977a) Scan electron micrographs of kaolins collected from diverse environments of origin—IV. Georgia kaolin and kaolinizing source rocks: Clays & Clay Minerals 25, 311345.CrossRefGoogle Scholar
Keller, W. D. (1977b) Scan electron micrographs of kaolins collected from diverse environments of origin—V. Kaolins collected in Australia and Japan on field trips of the 6th and 7th International Clay Conferences: Clays & Clay Minerals. In press.CrossRefGoogle Scholar
Keller, W. D. (1977c) Textures of kaolin-rich refractory clays as shown by scan electron micrography: AIME Preprint No. 77-H-302, Fall Meeting St. Louis, Mo., Oct. 19–21, 1977, 17 pp.Google Scholar
Keller, W. D. (1978) Flint-clay facies illustrated within one deposit of refractory clay: Clays and Clay Minerals, in press.CrossRefGoogle Scholar
Keller, W. D., Galan, E. and Mattias, P. P. (1977) Scan electron micrographs of clays from field-trip localities of the VIII International Kaolin Symposium, Spain and Italy, 1977: Proc. 8th Int. Kaolin Symp. and Meeting on Alunite, Madrid-Rome, 10 pp.Google Scholar
Keller, W. D. and Hanson, Robert F. (1975) Dissimilar fabrics by scan electron microscopy of sedimentary versus hydrothermal kaolins in Mexico: Clays and Clay Minerals, 23, 201204.CrossRefGoogle Scholar
Keller, W. D., Pickett, E. E. and Reesman, A. L. (1969) Elevated dehydroxylation temperature of the Keokuk geode kaolinite—a possible reference mineral: Proc. Int. Clay Conf. Jerusalem 1, 7585.Google Scholar
Keller, W. D., Westcott, J. F. and Bledsoe, A. O. (1954) The origin of Missouri fire clays: Clays & Clay Minerals. Proc. 2nd Conf., N.A.S.-N.R.C., Publ. 327, 746.Google Scholar
Lahodny-Sarc, O., Bohor, B. F., Stanek, J. and Hulinsky, V. (1972) Electron microprobe and scanning electron microscope study of bauxites: Proc. Int. Clay Conf. Madrid pp. 781786.Google Scholar
Loughnan, F. C. (1976) Kaolinite clay rocks of the Sydney Basin, Sydney, Australia: Mimeographed Field Guide: 6th Kaolin Symp., 25th Int. Geol. Congr. 53 pp.Google Scholar
Meunier, A. and Velde, B. (1976) Mineral reactions at grain contacts in early stages of granite weathering: Clay Miner. 11, 235240.CrossRefGoogle Scholar
Murray, H. (1975) Alteration of a granite to kaolin—mineralogy and geochemistry: Abstract: Int. Kaolin Symp. Dresden.Google Scholar
Murray, H. H. (1976) The Georgia sedimentary kaolins: 7th Symp. Genesis of Kaolin, Int. Geol. Correlation Program, Committee on Correlation of Age and Genesis of Kaolin, Tokyo, pp. 114125.Google Scholar
Patterson, S. H. and Buie, B. F. (1974) Field conference on kaolin and fuller's earth, Nov. 14–16, 1974: Guidebook 14: Ga. Geol. Surv. and Soc. Econ. Geol. 53 pp.Google Scholar
Sand, L. B. (1956) On the genesis of residual kaolins: Am. Mineral. 41, 2840.Google Scholar
Störr, M. and Buchwald, J. (1975) The kaolin deposits of “Caminau” and “Wiesa” of the Lusatian granodionite massif. In Kaolin Deposits of the GDR in the Northern Region of the Bohemian Massif (Edited by Störr, M.) , pp. 104126.Google Scholar
Störr, M. and Ruchholz, M. (1975) The Pre-Cenomanian weathering crusts in the GDR—Exposures at Dohna and the Götzenbüschel Hill. In Kaolin Deposits of the GDR in the Northern Region of the Bohemian Massif (Edited by Störr, M.) , pp. 172188.Google Scholar