Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T09:33:57.918Z Has data issue: false hasContentIssue false

Chromate Adsorption by Kaolinite

Published online by Cambridge University Press:  02 April 2024

J. M. Zachara
Affiliation:
Batteile, Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352
C. E. Cowan
Affiliation:
Batteile, Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352
R. L. Schmidt
Affiliation:
Batteile, Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352
C. C. Ainsworth
Affiliation:
Batteile, Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chromate (CrO42−) adsorption was investigated on kaolinite (0.2–2 μm) saturated with NaClO4 over a range of pH. Adsorption increased with decreasing pH because of protonation of chromate and/or variable charge sites on kaolinite. Chemical pretreatment to remove noncrystalline and crystalline oxide contaminants affected the magnitude of CrO42− adsorption, but not the pH range over which CrO42− adsorbed. Chromate adsorption at different sorbate and sorbent concentrations increased below the pHzpc for the kaolinite edge, suggesting the formation of weak surface complexes. If CrO42− and SO42− were present at equal concentration (5.0 × 10−7 M), the two solutes sorbed independently, suggesting binding to separate sites. The presence of excess SO42− (5.0 × 10−4 M), however, unexplainably enhanced CrO42− adsorption. The adsorption of both Chromate and sulfate can be described in terms of a site-binding model of the kaolinite edge, in which the edge is viewed as composite layers of Al and Si oxide. Surface complexation constants for CrO42− on kaolinite were similar to those for alumina, pointing to the importance of Al-OH edge sites in Chromate adsorption.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

References

Anderson, M. A., Ferguson, J. F. and Gavis, J., 1976 Arsenate adsorption on amorphous aluminum hydroxides J. Colloid Interface Sci. 54 391399.CrossRefGoogle Scholar
Babcock, K. L. and Schulz, R. K., 1970 Isotopic and conventional determination of exchangeable sodium percentage of soil in relation to plant growth Soil Sci. 109 1922.CrossRefGoogle Scholar
Balistrieri, L., Murray, J. W. and Jenne, E. A., 1979 Surface of goethite (α-FeOOH) in seawater Chemical Modeling in Aqueous Systems Washington, D.C. ACS Symposium Series 93 275298.CrossRefGoogle Scholar
Ball, J. W., Nordstrom, D. K. and Jenne, E. A. (1980) Additional and revised thermochemical data and computer code for WATEQ2—A computerized chemical model for trace and minor element speciation and mineral equilibria of natural waters: U.S. Geol. Surv. Water Res. Inv. 78–116, 109 pp.Google Scholar
Benjamin, M. M., 1978 Effects of competing metals and complexing liquids on trace metal adsorption at the oxide/solution interface Ph.D. thesis Stanford, California Stanford University.Google Scholar
Benjamin, M. M., Leckie, J. O. and Baker, R. A., 1980 Adsorption of metals at oxide interfaces: Effects of the concentration of adsorbate and competing metals Contaminants and Sediments, Vol. 2 Ann Arbor, Michigan Ann Arbor Science 305332.Google Scholar
Benjamin, M. M. and Leckie, J. O., 1981 Multiple site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxy-hydroxide J. Colloid Interface Sci. 79 209221.CrossRefGoogle Scholar
Bolan, N. S. and Barrow, N. J., 1984 Modeling the effect of adsorption of phosphate and other anions on the surface change of variable charge oxides J. Soil Sci. 35 273281.CrossRefGoogle Scholar
Bolland, M. D. A. Posner, A. M. and Quirk, J. P., 1976 Surface charge on kaolinites in aqueous suspension Aust. J. Soil Res. 14 197216.CrossRefGoogle Scholar
Chao, T. T. and Zhou, L., 1983 Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediment Soil Sci. Soc. Amer. J. 47 225232.CrossRefGoogle Scholar
Chen, Y. R., Butler, J. N. and Stumm, W., 1973 Adsorption of phosphate on alumina and kaolinite from dilute aqueous solutions J. Colloid Interface Sci. 43 421436.CrossRefGoogle Scholar
Davis, J. A., 1978 Adsorption of trace metals and com-plexing ligands at the oxide water interface Ph.D. thesis Stanford, California Stanford University.Google Scholar
Davis, J. A., Leckie, J. O. and Jenne, E. A., 1979 Speciation of adsorbed ions at the oxide/water interface Chemical Modeling in Aqueous Systems Washington, D.C. ACS Symposium Series 93 299320.CrossRefGoogle Scholar
Davis, J. A. and Leckie, J. D., 1980 Surface ionization and complexation at the oxide/water interface. 3. Adsorption of anions J. Colloid Interface Sci. 74 3243.CrossRefGoogle Scholar
Ferris, A. P. and Jepson, W. B., 1975 The exchange capacities of kaolinite and the preparation of homoionic clays J. Colloid Interface Sci. 51 245259.CrossRefGoogle Scholar
Griffen, R. A., Au, A. K. and Frost, R. R., 1977 Effect of pH on adsorption of chromium from landfill-leachate by clay minerals J. Environ. Sci. Health A12 431449.Google Scholar
Hawthorne, D. G. and Solomon, D. H., 1972 Catalytic activity of sodium kaolinites Clays & Clay Minerals 20 7578.CrossRefGoogle Scholar
Hayes, K. F., Roe, A. L., Brown, G. E., Hodgson, K. O., Leckie, J. O. and Parks, G. A., 1987 In situ X-ray adsorption study of surface complexes: Selenium oxyanions on a-FeOOH Science 238 783786.CrossRefGoogle Scholar
Honeyman, B. D., 1984 Cation and anion adsorption at the oxide/solution interface in systems containing binary mixtures of adsorbents: An investigation of the concept of adsorptive additivity Ph.D. thesis Stanford, California Stanford University.Google Scholar
Johnston, C. T., Sposito, G. and Birge, R. R., 1985 Raman spectroscopic study of kaolinite in aqueous suspension Clays & Clay Minerals 33 483490.CrossRefGoogle Scholar
Kafkafi, V., Posner, A. M. and Quirk, J. P., 1967 Desorp-tion of phosphate from kaolinite Soil Sci. Soc. Amer. Proc. 31 348353.CrossRefGoogle Scholar
Langston, R. B., Jenne, E. A. and Bradley, W. E., 1964 NaOH dissolution of some oxide impurities from kaolin Clays and Clay Minerals, Proc. 12th Natl. Conf. Atlanta, Georgia, 1963 New York Pergamon Press 633647.Google Scholar
Leckie, J. O., Benjamin, M. M., Hayes, K., Kaufman, G. and Altman, S., 1980 Adsorption/coprecipitation of trace elements from water with iron oxyhydroxide Electric Power Res. Inst. Rept. California Palo Alto.Google Scholar
Liechti, P., 1983 Adsorption von Metallionen an der Grenzfläche Kaolinit-Wasser Ph.D. thesis Bern, Switzerland University of Bern.Google Scholar
MacNaughton, M. G., Drucker, H. and Wildung, R. E., 1977 Adsorption of chromium(VI) at the oxide-water interface Biological Implications of Metals in the Environment Springfield, Virginia CONF-750929 240253.Google Scholar
Mattigod, S. V., Frampton, J. A. and Lim, C. H., 1985 Effect of ion pair formation on boron adsorption by kaolinite Clays & Clay Minerals 33 433457.CrossRefGoogle Scholar
Mayer, Lawrence M. and Schick, Linda L., 1981 Removal of hexavalent chromium from estuarine waters by model substrates and natural sediments Environmental Science & Technology 15 12 14821484.CrossRefGoogle Scholar
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals, Proc. 7th Natl. Conf. Washington, D.C. New York Pergamon Press 317327.Google Scholar
Nagarajah, S., Posner, A. M. and Quirk, J. P., 1968 Desorption of phosphate from kaolinite by citrate and bicarbonate Soil Sci. Soc. Amer. Proc. 32 507510.CrossRefGoogle Scholar
Phelan, P. J. and Mattigod, S. V., 1984 Adsorption of molybdate anion (MoO4 2-) by sodium saturated kaolinite Clays & Clay Minerals 32 4548.CrossRefGoogle Scholar
Posner, A. M. and Bowden, J. W., 1980 Adsorption isotherms: Should they be split? J. Soil Sci. 31 110.CrossRefGoogle Scholar
Rai, D., Zachara, J. M., Eary, L. E., Ainsworth, C. C., Amonette, J. E., Cowan, C. E., Szelmeczka, R. W., Resch, C. T., Schmidt, R. L., Smith, S. C. and Girwin, D. C., 1988 Chromium reactions in geologic materials Electric Power Res. Inst. Rept. California EA-5741, Palo Alto.Google Scholar
Rajan, S. S. S., 1978 Sulfate adsorbed on hydrous alumina, ligands displaced, and changes in surface charge Soil Sci. Soc. Amer. J. 42 3944.CrossRefGoogle Scholar
Rand, B. and Melton, I. E., 1975 Isoelectric point of the edge surface of kaolinite Nature 257 214216.CrossRefGoogle Scholar
Rao, S. M. and Sridharan, A., 1984 Mechanism of sulfate adsorption by kaolinite Clays & Clay Minerals 32 414418.CrossRefGoogle Scholar
Rengasamy, P., 1976 Substitution of iron and titanium in kaolinites Clays & Clay Minerals 24 265266.CrossRefGoogle Scholar
Riese, A.C., 1982 Adsorption of radium and thorium onto quartz and kaolinite: A comparison of solution/surface equilibria models Ph.D. thesis Boulder, Colorado Colorado School of Mines.Google Scholar
Schmidt, R. L., 1984 Thermodynamic properties and environmental chemistry of chromium Richland, Washington Pacific Northwest Laboratory.CrossRefGoogle Scholar
Schofield, R. K. and Samson, H. R., 1953 The defloccu-lation of kaolinite suspensions and the accompanying change over from positive to negative chloride adsorption Clay Miner. Bull. 2 4551.CrossRefGoogle Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford Univ. Press.Google Scholar
Sumner, M. E., 1962 The effect of sodium dithionite on the surface properties of clays Agrochemica 6 183189.Google Scholar
Sumner, M. E. and Reeve, N. G., 1966 The effect of iron oxide impurities on the positive and negative adsorption of chloride by kaolinites J. Soil Sci. 17 274279.CrossRefGoogle Scholar
Swartzen-Allen, L. S. and Matijevic, E., 1974 Surface and colloid chemistry of clays Chem. Rev. 74 385400.CrossRefGoogle Scholar
Truesdell, A. H. and Jones, B. F., 1974 WATEQ, a computer program for calculating chemical equilibria of natural waters U.S. Geol. Surv. J. Res. 2 233248.Google Scholar
U.S. Environmental Protection Agency, 1986 Quality Criteria for Water Washington, D.C. U.S. Government Printing Office.Google Scholar
Westall, J., 1982 FITEQL, a computer program for determination of chemical equilibrium constants from experimental data Corvallis, Oregon Department of Chemistry, Oregon State University.Google Scholar
Williams, D. J. A. and Williams, K. P., 1978 Electrophoresis and zeta potential of kaolinite J. Colloid Interface Sci. 65 7987.CrossRefGoogle Scholar
Zachara, J. M., Girvin, D. C., Schmidt, R. L. and Resch, C. T., 1987 Chromate adsorption on amorphous iron oxyhydroxide in presence of major groundwater ions Environ. Sci. Technol. 21 589594.CrossRefGoogle ScholarPubMed