Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T22:31:24.173Z Has data issue: false hasContentIssue false

Chlorite, Corrensite, and Chlorite-Mica in Late Jurassic Fluvio-Lacustrine Sediments of the Cameros Basin of Northeastern Spain

Published online by Cambridge University Press:  28 February 2024

José F. Barrenechea
Affiliation:
Departamento de Cristalografía y Mineralogía, Universidad Complutense de Madrid, 28040 Madrid, Spain
Magdalena Rodas
Affiliation:
Departamento de Cristalografía y Mineralogía, Universidad Complutense de Madrid, 28040 Madrid, Spain
Martin Frey
Affiliation:
Mineralogisch-Petrographisches Institut, Basel University, CH 4056 Basel, Switzerland
Jacinto Alonso-Azcárate
Affiliation:
Facultad Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Fábrica de Armas, 45071 Toledo, Spain
José Ramón Mas
Affiliation:
Departamento de Estratigrafía, Universidad Complutense de Madrid, 28040 Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distribution and crystal-chemical characteristics of chlorite, corrensite, and mica in samples from a stratigraphic profile in the Cameros basin are controlled by changes in the sedimentary facies. The lacustrine marls and limestones from the base and the top of the profile contain quartz + calcite + illite ± dolomite ± chlorite ± albite ± paragonite ± Na, K-rich mica. Chlorite is rich in Mg, with Fe/(Fe + Mg) ratios ranging between 0.18–0.37. A formation mechanism involving reaction between Mg-rich carbonate and dioctahedral phyllosilicates is proposed for these Mg-rich chlorites, on the basis of the mutually exclusive relationship found between Mg-rich chlorite and dolomite, together with the relative increase in the proportion of calcite in samples containing chlorite.

The mudrocks from the middle part of the profile are composed of quartz + albite + illite + corrensite (with a mean coefficient of variability of 0.60%) ± chlorite. Corrensite and chlorite are richer in Fe2+ than those from the base or top of the profile, with mean Fe/(Fe + Mg) ratios of 0.51 and 0.56, respectively. Textural and compositional features suggest a formation mechanism for the corrensite, chlorite, and chlorite-mica crystals through replacement of detrital igneous biotite. Whether or not corrensite occurs with chlorite appears to be related to redox conditions. The presence of corrensite alone is apparently favored by oxidizing conditions, whereas the occurrence of corrensite + chlorite is related to more reducing conditions. Corrensite shows higher Si and Na + K + Ca contents, and slightly lower Fe/(Fe + Mg) ratios than chlorite. The presence of corrensite and the lack of random chlorite-smectite interlayering is discussed in terms of the fluid/rock ratio; the occurrence is related to the hydrothermal character of metamorphism in the Cameros basin.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Almon, W.R. Fullerton, L.B. and Davies, D.K., 1976 Pore space reduction in Cretaceous sandstones through chemical precipitation of clay minerals Journal of Sedimentary Petrology 46 8996.Google Scholar
Alonso-Azcarate, J. Barrenechea, J.F. Rodas, M. and Mas, J.R., 1995 Comparative study of the transition between very low grade and low grade metamorphism in siliciclastic and carbonate sediments. Early Cretaceous, Cameros Basin (North Spain) Clay Minerals 30 407419 10.1180/claymin.1995.030.4.12.CrossRefGoogle Scholar
Alonso-Azcárate, J. Rodas, M. Bottrell, S.H. Raiswell, R. Velasco, F. and Mas, J.R., 1999 Pathways and distances of fluid flow during low-grade metamorphism: Evidence from pyrite deposits of the Cameros Basin, Spain Journal of Metamorphic Geology 17 339348 10.1046/j.1525-1314.1999.00202.x.CrossRefGoogle Scholar
April, R.H., 1981 Trioctahedral smectite and interstratified chlorite/smectite in Jurassic strata of the Conneticut Valley Clays and Clay Minerals 29 3139 10.1346/CCMN.1981.0290105.CrossRefGoogle Scholar
Bailey, S.W., 1982 Nomenclature for regular interstratifications American Mineralogist 67 394398.Google Scholar
Barrenechea, J.F. Rodas, M. and Mas, J.R., 1995 Clay mineral variation associated with diagenesis and low grade metamorphism of Early Creataceous sediments in the Cameros Basin, Spain Clay Minerals 30 119133 10.1180/claymin.1995.030.2.04.CrossRefGoogle Scholar
Bettison-Varga, L. and Mackinnon, I.D.R., 1997 The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite Clays and Clay Minerals. 45 506516 10.1346/CCMN.1997.0450403.CrossRefGoogle Scholar
Bettison-Varga, L. Mackinnon, I.D.R. and Schiffman, P., 1991 Integrated TEM, XRD and microprobe investigation of mixed-layered chlorite/smectite from the Point Sal Ophiolite, California Journal of Metamorphic Geology 9 711721 10.1111/j.1525-1314.1991.tb00559.x.CrossRefGoogle Scholar
Bodine, M.W. Madsen, B.M., Schultz, L.G. Olphen, H. v. and Mumpton, F.A., 1987 Mixed-layer chlorite/smectites from a Pennsylvanian evaporite cycle, Grand County, Utah Proceedings of the International Clay Conference Denver, 1985 Denver, Colorado The Clay Minerals Society 8593.Google Scholar
Brigatti, M.F. and Poppi, L., 1984 Crystal chemistry of corrensite: A review Clays and Clay Minerals 32 391399 10.1346/CCMN.1984.0320507.CrossRefGoogle Scholar
Caillère, S., Henin, S. and Rautereau, M. (1982) Minèralogie des Argiles. I. Structure et Priopiétés Physica Chimiques. Masson ed., Paris, 184 pp.Google Scholar
Casquet, C. Galindo, C. González Casado, J.M. Alonso, A. Mas, J.R. Rodas, M. García, E. and Barrenechea, J.F., 1992 El metamorfismo en la Cuenca de los Cameros. Geocronologia e implicaciones tectónicas Geogaceta 11 2225.Google Scholar
Chang, H.K. Mackenzie, F.T. and Schoonmaker, J., 1986 Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins Clays and Clay Minerals 34 407423 10.1346/CCMN.1986.0340408.CrossRefGoogle Scholar
Frey, M. and Frey, M., 1987 Very low-grade metamorphism of clastic sedimentary rocks Low-Temperature Metamorphism Glasgow Blackie and Sons 958.Google Scholar
Gómez Fernández, J.C., 1993 Análisis de la Cuenca sedimentaria de los Cameros durante sus etapas iniciales de relleno en relación con su evolución paleogeográfica .Google Scholar
Guimerá, J. Alonso, A. Mas, J.R., Buchanan, J.G. and Buchanan, P.G., 1995 Inversion of an extensional-ramp basin by a neoformed thrust: The Cameros basin (N Spain) Basin Inversion London Geological Society Special Publication 88 433453.Google Scholar
Guiraud, M., 1983 Evolution tectono-sédimentaire du basin Wealdien (Crétacé inférieur) en relais de décrochements de Logroño-Soria (NW Espagne) Montpellier Université des Sciences et Techniques de Languedoc.Google Scholar
Hillier, S., 1993 Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland Clays and Clay Minerals 41 240259 10.1346/CCMN.1993.0410211.CrossRefGoogle Scholar
Hillier, S., 1995 Mafic phyllosilicates in low-grade metabasites. Characterization using deconvolution analysis—Discussion Clay Minerals. 30 6773 10.1180/claymin.1995.030.1.07.CrossRefGoogle Scholar
Hutcheon, I. Oldershaw, A. and Ghent, E.D., 1980 Diagenesis of Cretaceous sandstones of the Kootenay Formation at Elk Valley (Southeast British Columbia) and Mt. Allan (Southwest Alberta) Geochimica et Cosmochimica Acta 44 14251435 10.1016/0016-7037(80)90108-8.CrossRefGoogle Scholar
Inoue, A., 1985 Chemistry of corrensite: A trend in composition of trioctahedral chlorite/smectite during diagenesis Journal of the College of Arts and Sciences, Chiba University B–18 6982.Google Scholar
Jiang, W.T. and Peacor, D.R., 1994 Formation of corrensite, chlorite and chlorite-mica stacks by replacement of detrital biotite in low-grade pelitic rocks Journal of Metamorphic Geology 12 867884 10.1111/j.1525-1314.1994.tb00065.x.CrossRefGoogle Scholar
Jiang, W.T. and Peacor, D.R., 1994 Prograde transitions of corrensite and chlorite in low-grade pelitic rocks from the Gaspé Peninsula, Quebec Clays and Clay Minerals 42 497517 10.1346/CCMN.1994.0420501.CrossRefGoogle Scholar
Jiang, W.T. Peacor, D.R. and Buseck, P.R., 1994 Chlorite geothermometry?—Contamination and apparent octahedral vacancies Clays and Clay Minerals 42 593605 10.1346/CCMN.1994.0420512.CrossRefGoogle Scholar
Kubler, B., 1967 La cristallinité de l’illite et les zones tout á fait supérieures du métamorphisme Etages Techtoniques, Coll Neuchâtel 105122.Google Scholar
Li, G. Peacor, D.R. and Essene, E.J., 1998 The formation of sulfides during alteration of biotite to chlorite-corrensite Clays and Clay Minerals 46 649657 10.1346/CCMN.1998.0460605.Google Scholar
Mas, J.R. Alonso, A. and Guimera, J., 1993 Evolución tectonosedimentaria de una cuenca extensional intraplaca: La cuenca finijurásica-eocretácica de Los Cameros (La Rioja-Soria) Revista de la Sociedad Geológica de España 6 129144.Google Scholar
Mata, M.P. López-Aguayo, F. Gil-Imaz, A. and Pocoví, A., 1999 Intercrecimientos de filosilicatos en la Cuenca de Cameros y su relación con la génesis de la esquistosidad en la etapa metamórfica de bajo grado Geogaceta 24 227230.Google Scholar
Meunier, A. Clement, J.I. Bouchet, A. and Beaufort, D., 1988 Chlorite-calcite and corrensite-dolomite crystallization during two superimposed events of hydrothermal alteration in the “Les Crêtes” granite, Vosgues, France Canadian Mineralogist 26 413426.Google Scholar
Roberson, H.E. and Reynolds, R.C. Jr. and Jenkins, D.M., 1999 Hydrothermal synthesis of corrensite: A study of the transformation of saponite to corrensite Clays and Clay Minerals 47 212218 10.1346/CCMN.1999.0470211.CrossRefGoogle Scholar
Santos, G. and Blanco, J.A., 1993 Paleosuelos y paleoalteraciones del Weald de la zona oeste de la Cuenca de Cameros (borde SW de la Sierra de la Demanda) Cuadernos de Geología Ibérica 17 185206.Google Scholar
Schiffman, P. and Staudigel, H., 1995 The smectite to chlorite transition in a fossil seamount hydrothermal system: The basement complex of La Palma, Canary Islands Journal of Metamorphic Geology 13 487498 10.1111/j.1525-1314.1995.tb00236.x.CrossRefGoogle Scholar
Schmidt, S.T.h. and Robinson, D., 1997 Metamorphic grade and porosity and permeability controls on mafic phyllosilicate distributions in a regional zeolite to greenschist facies transition of the North Shore Volcanic Group, Minnesota Geological Society of America Bulletin 109 683697 10.1130/0016-7606(1997)109<0683:MGAPAP>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Shau, Y.H. and Peacor, D.R., 1992 Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83— a TEM and AEM study Contributions to Mineralogy and Petrology 112 119133 10.1007/BF00310959.CrossRefGoogle Scholar
Shau, Y.H. Peacor, D.R. and Essene, E.J., 1990 Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies Contributions to Mineralogy and Petrology 105 123142 10.1007/BF00678980.CrossRefGoogle Scholar
Surdam, R.C. Crossey, L.J., Gautier, D.L. Kharaka, Y.K. and Surdam, R.C., 1985 Mechanisms of organic/inorganic interactions in sandstones/shale sequences Relations of Organic Matter and Mineral Diagenesis Tulsa, Oklahoma Society of Economic Paleontologists and Mineralogists 177232 10.2110/scn.85.03.0177.CrossRefGoogle Scholar
Velde, B., 1977 A proposed phase diagram for illite, expanding chlorite, corrensite and illite-montmorillonite mixed layered minerals Clays and Clay Minerals 25 264270 10.1346/CCMN.1977.0250403.CrossRefGoogle Scholar
Zane, A. Sassi, R. and Guidotti, C.V., 1998 New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschists-facies rocks Canadian Mineralogist 36 713726.Google Scholar