Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-02T19:51:09.709Z Has data issue: false hasContentIssue false

Chemostratigraphic correlation of sediments containing expandable clay minerals based on ion exchange with Cu(II) triethylenetetramine

Published online by Cambridge University Press:  01 January 2024

Tomáš Grygar*
Affiliation:
Institute of Inorganic Chemistry of the AS CR, v.v.i., 250 68, Řež, Czech Republic
Jaroslav Kadlec
Affiliation:
Institute of Geology AS CR, v.v.i., Rozvojová 269, 165 00, Prague, Czech Republic
Anna Žigová
Affiliation:
Institute of Geology AS CR, v.v.i., Rozvojová 269, 165 00, Prague, Czech Republic
Martin Mihaljevič
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Albertov 6, 128 43 Prague, Czech Republic
Tereza Nekutová
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Albertov 6, 128 43 Prague, Czech Republic
Richard Lojka
Affiliation:
Czech Geological Survey, Klárov 3/131, 118 21, Prague 1, Czech Republic
Ivo Světlík
Affiliation:
Nuclear Physics Institute AS CR, v.v.i., CRL Radiocarbon Laboratory, Na Truhlářce 39/64, 180 86, Prague, Czech Republic
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Copper(II) triethylenetetramine [Cu(trien)]2+ is an agent suitable for the 1-step determination of the cation exchange capacity (CEC) of many geomaterials using a procedure much less laborious than other, commonly used methods. It is also suitable for the determination of the composition of original exchangeable cations. In contrast to other common ions used for CEC analysis, the Cu(II) complex with triethylenetetramine, [Cu(trien)]2+, is specific for expandable clay minerals. The robustness of [Cu(trien)]2+ analysis was verified using reference clays, ion-exchanged reference clays, sediments, and soils. The [Cu(trien)]2+-based CEC of expandable clay minerals is not influenced significantly by ferrihydrite, goethite, manganite, birnessite, calcite, and gypsum. Birnessite, calcite, and gypsum admixtures affect the composition of the evolved cations. [Cu(trien)]2+ does not recover the entire CEC of soils (but rather that of the clay minerals only) which contain components other than clays which contribute to the CEC, e.g. soil organic matter. In a series of loess with buried paleosols and recent soils the [Cu(trien)]2+-based CEC ranged from 30 to 110% of total CEC obtained by traditional BaCl2 methods. The relative ratio of Ca to Mg, the prevailing exchangeable cations in soils and sediments in exogenic environments, are similar after [Cu(trien)]2+ and conventional BaCl2 treatments. The Ca/Mg ratio in the exchangeable fraction was used successfully for chemostratigraphic correlation of paleolacustrine sediments from a large lake in the Upper Carboniferous basins of eastern equatorial Pangaea and a series of recent flood plain sediments of the meandering Morava River in the Czech Republic. The Ca/Mg ratio obtained by [Cu(trien)]2+ analysis is proposed as a novel tool for the chemostratigraphic correlation of sediment series containing expandable clay minerals.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Ammann, L. Bergaya, F. and Lagaly, G., 2005 Determination of the cation exchange capacity of clays with copper complexes revisited Clay Minerals 40 441453 10.1180/0009855054040182.CrossRefGoogle Scholar
Battaglia, S. Leoni, L. and Sartori, F., 2006 A method for determining the CEC and chemical composition of clays via XRF Clay Minerals 41 717725 10.1180/0009855064130214.CrossRefGoogle Scholar
Beldin, S.I. Caldwell, B.A. Sollins, P. Sukman, E.W. Lajtha, K. and Crow, S.E., 2007 Cation exchange capacity of density fractions from paired conifer/grassland soils Biology and Fertility of Soils 43 837841 10.1007/s00374-006-0161-y.CrossRefGoogle Scholar
Bergaya, F. and Vayer, M., 1997 CEC of clays: Measurement by adsorption of copper ethylenediamine complex Applied Clay Science 12 275280 10.1016/S0169-1317(97)00012-4.CrossRefGoogle Scholar
Borden, D. and Giese, R.F., 2001 Baseline studies of the Clay Minerals Society Source Clays: Cation exchange capacity measurements by the ammonia-electrode method Clays and Clay Minerals 49 444445 10.1346/CCMN.2001.0490510.CrossRefGoogle Scholar
Bridge, J.S., 2003 Rivers and Floodplains: Forms, Processes, and Sedimentary Record Oxford, UK Blackwell Publishing.Google Scholar
Ching, S. Petrovay, D.J. Jorgensen, M.L. and Suib, S.L., 1997 Sol-gel synthesis of layered birnessite-type manganese oxides Inorganic Chemistry 36 883890 10.1021/ic961088d.CrossRefGoogle Scholar
Chipera, S.J. and Bish, D.L., 2001 Baseline studies of the Clay Minerals Society Source Clays: powder X-ray diffraction analyses Clays and Clay Minerals 49 398409 10.1346/CCMN.2001.0490507.CrossRefGoogle Scholar
Choy, J.H. Kim, D.-K. Park, J.-C. Choi, S.-N. and Kim, Y.-J., 1997 Intracrystalline and electronic structures of copper(II) complexes stabilized in two-dimensional aluminosilicate Inorganic Chemistry 36 189195 10.1021/ic960631n.CrossRefGoogle Scholar
Ciesielski, H. and Sterckeman, T., 1997 A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils Agronomie 17 916 10.1051/agro:19970102.CrossRefGoogle Scholar
Crausbay, S.D. Russell, J.M. and Schnurrenberger, D.W., 2006 A ca. 800-year lithologic record of drought from sub-annually laminated lake sediment, East Java Journal of Paleolimnology 35 641659 10.1007/s10933-005-4440-7.CrossRefGoogle Scholar
Curtin, D. Selles, F. and Steppuhn, H., 1998 Estimating calcium-magnesium selectivity in smectitic soils from organic matter and texture Soil Science Society of America Journal 62 12801285 10.2136/sssaj1998.03615995006200050019x.CrossRefGoogle Scholar
Czímerová, A. Bujdák, J. and Dohrmann, R., 2006 Traditional and novel methods for estimating the layer charge of smectites Applied Clay Science 34 213 10.1016/j.clay.2006.02.008.CrossRefGoogle Scholar
Dill, H.G. Khishigsuren, S. Melcher, F. Bulgamaa, J. Bolorma, K. Botz, R. and Schwarz-Schampera, U., 2005 Facies-related diagenetic alteration in lacustrine-deltaic red beds of the Paleogene Ergeliin Zoo Formation (Erdene Sum area, S. Gobi, Mongolia) Sedimentary Geology 181 124 10.1016/j.sedgeo.2005.06.007.CrossRefGoogle Scholar
Dohrmann, R., 2006 Cation exchange capacity methodology I: An efficient model for the detection of incorrect cation exchange capacity and exchangeable cation results Applied Clay Science 34 3137 10.1016/j.clay.2005.12.006.CrossRefGoogle Scholar
Dohrmann, R., 2006 Cation exchange capacity methodology II: A modified silver-thiourea method Applied Clay Science 34 3846 10.1016/j.clay.2006.02.009.CrossRefGoogle Scholar
Dohrmann, R., 2006 Cation exchange capacity methodology III: Correct exchangeable calcium determination of calcareous clays using a new silver-thiourea method Applied Clay Science 34 4757 10.1016/j.clay.2006.02.010.CrossRefGoogle Scholar
Giovanoli, R. and Leunberger, U., 1969 Oxidation of manganese oxide hydroxide Helvetica Chimica Acta 52 23332347 10.1002/hlca.19690520815.CrossRefGoogle Scholar
Giresse, P. Maley, J. and Kelts, K., 1991 Sedimentation and paleoenvironment in Crater Lake Barombi Mbo, Cameroon, during the last 25,000 years Sedimentary Geology 71 151175 10.1016/0037-0738(91)90099-Y.CrossRefGoogle Scholar
Grygar, T. Bezdička, P. Hradil, D. Hrušková, M. Novotná, K. Kadlec, J. Pruner, P. and Oberhänsli, H., 2005 Characterization of expandable clay minerals in Lake Baikal sediments by thermal dehydration and cation exchange Clays and Clay Minerals 53 389400 10.1346/CCMN.2005.0530407.CrossRefGoogle Scholar
Grygar, T. Bláhová, A. Hradil, D. Bezdička, P. Kadlec, J. Schnabl, P. Swann, G. and Oberhänsli, H., 2007 Lake Baikal climatic record between 310 and 50 ky BP: Interplay between diatoms, watershed weathering and orbital forcing Palaeogeography, Palaeoclimatology, Palaeoecology 250 5067 10.1016/j.palaeo.2007.03.001.CrossRefGoogle Scholar
Gupta, S.K. and Polach, H.A., 1985 Radiocarbon dating practises at ANU Australia ANU, Canberra.Google Scholar
Havlíček, P., Starkel, L. Gregory, K.J. and Thornes, J.B., 1991 The Morava River Basin During the Last 15 000 Years Temperate Palaeohydrology: Fluvial Processes in the Temperate Zone During the Last 15,000 Years Chichester, West Sussex, UK John Wiley & Sons 319341.Google Scholar
Havlíček, P. and Smolíková, L., 1994 Evolution of south Moravian flood plains Věstnik Českého Geologického Ústavu Praha 69 2340 (in Czech).Google Scholar
Haslinger, E. Ottner, F. and Lundstrom, U.S., 2007 Pedogenesis in the Alnö carbonatite complex, Sweden Geoderma 142 127135 10.1016/j.geoderma.2007.08.014.CrossRefGoogle Scholar
Hendershot, W.H. and Duquette, M., 1986 A simple barium chloride method for determining cation exchange capacity and exchangeable cations Soil Science Society of. America Journal 50 605608 10.2136/sssaj1986.03615995005000030013x.CrossRefGoogle Scholar
Hernández-Soriano, M.C. Peña, A. and Mingorance, M.D., 2007 Response surface methodology for the microwave-assisted extraction of insecticides from soil samples Analytical and Bioanalytical Chemistry 389 619630 10.1007/s00216-007-1418-5.CrossRefGoogle ScholarPubMed
Hofmeister, J., 2002 Influence of atmospheric deposition of nitrogen compounds on present vegetation changes in natural reserve Bohemian Karst (in Czech) Prague Faculty of Natural Sciences, Charles University 256 pp.Google Scholar
Holub, V. Skoček, V. and Tásler, R., 1975 Paleogeography of Late Paleozoic in Bohemian Massif Palaeogeography, Palaeoclimatology, Palaeoecology 18 313332 10.1016/0031-0182(75)90039-5.CrossRefGoogle Scholar
ICP Forest, 2006 International Co-operative Programme on Assessment and Monitoring of Air Pollution effect on forest (ICP forest). Manual part IIIa Sampling and analyses of soil, Annex 1, Methods for Soil Analyses Belgium Forest Soil Co-ordinating Centre, Research Institute for Nature and Forest 104 pp.Google Scholar
Jiang, Y. Zhang, Y.G. Liang, W.J. and Li, Q., 2005 Pedogenic and anthropogenic influence on calcium and magnesium behaviors in Stagnic Anthrosols Pedosphere 15 341346.Google Scholar
Kelts, K. Talbot, M., Tilzer, M.M. and Serruya, C., 1990 Lacustrine carbonate as geochemical archives of environmental change and biotic/abiotic interactions Large Lakes: Ecological Structure and Function 288315 10.1007/978-3-642-84077-7_15.CrossRefGoogle Scholar
Meier, L.P. and Kahr, P., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetranine and tetraethylenepentamine Clays and Clay Minerals 47 386388 10.1346/CCMN.1999.0470315.CrossRefGoogle Scholar
Nekutová, T., 2005 Comparison of selected methods to determination of basic parameters of soils Faculty of Natural Sciences Prague, Czech Republic Charles University 56 pp. (in Czech).Google Scholar
Pešek, J. Holub, V. Malý, L. Martínek, K. Prouza, V. Spudil, J. and Tásler, R., 2001 Geology and Deposits of the Upper Palaeozoic Limnic Basins of the Czech Republic Prague, Czech Republic Czech Geological Institute (in Czech).Google Scholar
Reimer, P.J. Baillie, M.G.L. Bard, E. Bayliss, A. Beck, J.W. Bertrand, C.J.H. Blackwell, P.G. Buck, C.E. Burr, G.S. Cutler, K.B. Damon, P.E. Edwards, R.L. Fairbanks, R.G. Friedrich, M. Guilderson, T.P. Hogg, A.G. Hughen, K.A. Kromer, B. McCormac, G. Manning, S. Ramsey, C.B. Reimer, R.W. Remmele, S. Southon, J.R. Stuiver, M. Talamo, S. Taylor, F.W. van der Plicht, J. and Weyhenmeyer, C.E., 2004 IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP Radiocarbon 46 10291058 10.1017/S0033822200032999.Google Scholar
Rytwo, G. Banin, A. and Nir, S., 1996 Exchange reactions in the Ca-Mg-Na-montmorillonite system Clays and Clay Minerals 44 276285 10.1346/CCMN.1996.0440212.CrossRefGoogle Scholar
Saif, H.T. Smeck, N.E. and Bigham, J.M., 1997 Pedogenic influence on base saturation and calcium/magnesium ratios in soils of southeastern Ohio Soil Science Society of America Journal 61 509515 10.2136/sssaj1997.03615995006100020020x.CrossRefGoogle Scholar
Schoonheydt, R.A. Velghe, F. Baerts, R. and Uytterhoeven, J.B., 1979 Complexes of diethylenetriamine (dien) and tetraethylenepentamine (tetren) with Cu(II) and Ni(II) on hectorite Clays and Clay Minerals 27 269278 10.1346/CCMN.1979.0270405.CrossRefGoogle Scholar
Schwertmann, U. and Cornell, R.M., 2000 The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses 2nd KGaA Weinheim, Germany Wiley VCH Verlag GmbH & Co..Google Scholar
Shaw, J.N. West, L.T. and Hajek, B.F., 2001 Ca-Mg ratios for evaluating pedogenesis in the piedmont province of the southeastern United States of America Canadian Journal of Soil Science 81 415421 10.4141/S00-045.CrossRefGoogle Scholar
Skoček, V., Gierlowski-Kordesch, E. and Kelts, K., 1994 The Stephanian B Lake, Bohemian Basin, Czech Republic Global Geological Record of Lake Basins Cambridge, UK Cambridge University Press 8990.Google Scholar
Stanjek, H. and Marchel, C., 2008 Linking the redox cycles of Fe oxides and Fe-rich clay minerals: an example from a palaeosol of the Upper Freshwater Molasse Clay Minerals 43 6982 10.1180/claymin.2008.043.1.05.CrossRefGoogle Scholar
Turpault, M.P. Bonnaud, P. Fichter, J. Ranger, J. and Dambrine, E., 1996 Distribution of cation exchange capacity between organic matter and mineral fractions in acid forest soils (Vosges mountains, France) European Journal of Soil Science 47 545556 10.1111/j.1365-2389.1996.tb01854.x.CrossRefGoogle Scholar
Van Olphen, H. and Fripiat, J.J., 1979 Data Handbook for Clay Materials and other Non-Metallic Minerals Oxford, UK Pergamon Press.Google Scholar
Vrbová-Dvorská, J. Vachek, M. Poláček, L. Tegel, W. Škojec, J. and Poláček, L., 2005 Paläoökologische und dendrochronologische Untersuchungen an subfossilen Baumstämmen in Flußablagerungen der March/Morava bei Strážnice, Südmähren Studien zum Burgwall von Mikulčice VI ASCR Brno, Czech Republic Archaeological Institute 5992.Google Scholar
Wada, S.-I. and Seki, H., 1994 Ca-K-Na exchange equilibria on a smectitic soil: modelling the variation of selectivity coefficient Soil Science and Plant Nutrition 40 629636 10.1080/00380768.1994.10414302.CrossRefGoogle Scholar
Žigová, A. and Št’astný, M., 2006 Environmental record in soils on loess in northern Moravia, Czech Republic Acta Geodynamica and Geomaterialia 3 3339.Google Scholar