Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T20:42:14.506Z Has data issue: false hasContentIssue false

Characterization of Tubular Chrysotile by Thermoporometry, Nitrogen Sorption, Drifts, and TEM

Published online by Cambridge University Press:  28 February 2024

Mark K. Titulaer
Affiliation:
Department of Geochemistry, Institute for Earth Sciences, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands
J. Cees van Miltenburg
Affiliation:
Chemical Thermodynamics Group, University of Utrecht, Transitorium 3, Padualaan 8, 3584 CH Utrecht, The Netherlands
J. Ben H. Jansen
Affiliation:
Department of Geochemistry, Institute for Earth Sciences, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands
John W. Geus
Affiliation:
Department of Inorganic Chemistry, University of Utrecht, Sorbonnelaan 16 P.O. Box 80.083, 3508 TB Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The maximum crystal radius Rn of ice in hollow wet chrysotile tubes is established by thermoporometry to be between 2.8 and 3.2 nm, and the internal pore volume Vn of the tubes to be between 0.008 and 0.02 ml/g. The hollow tubes of chrysotile and, for comparative reasons, small plates of talc, are hydrothermally synthesized at temperatures between 563 and 600 K and at pressures between 75 and 120 hPa. Size and shape of the pores can be varied by changing the Mg/Si molar ratios in steps of 3/1.5 and 3/2 for chrysotile and 3/3.6 and 3/4 for talc. The tubular morphology of the aggregates dried at 393 K is investigated by 1) transmission electron microscopy (TEM), 2) nitrogen adsorption and desorption at 77 K, and 3) diffuse reflectance infrared fourier transformed spectroscopy (DRIFTS). The radius within the hollow tubes, Ri, is between 2.5 and 4.0 nm as measured by TEM, and between 2.8 and 3.2 nm as determined by nitrogen adsorption and desorption. The measured radii agree well with the value calculated from crystallographic data, which is smaller than 5.3 nm. Within the dried aggregates the tubes are clustered in regular patterns, in which each tube is surrounded by six other tubes. The external radius, Ro, between the clustered tubes is from 1.6 to 2.9 nm as observed by TEM, and from 1.8 to 2.3 nm by N2 adsorption and desorption. The external radius is not measured by thermoporometry. Where thermoporometry only measures the average pore size and pore volume within the tubes, TEM and N2 adsorption and desorption additionally provide the corresponding values between the tubes. A third pore radius, 5 to 20 nm between the clusters of chrysotile tubes, is established with N2 adsorption and desorption.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Footnotes

*

This paper is a contribution of the Debye Institute, University of Utrecht, The Netherlands.

References

Ahlrich, J. L. and White, J. L., 1962 Freezing and lyophilizing alters the structure of bentonite gels Science 136 11161118 10.1126/science.136.3522.1116-a.CrossRefGoogle Scholar
Anderson, D. M. and Hoekstra, P., 1965 Migration of in-terlamellar water during freezing and thawing of Wyoming bentonite Soil Sci. Soc. Amer. Proc. 29 498504 10.2136/sssaj1965.03615995002900050010x.CrossRefGoogle Scholar
Banin, A. and Anderson, D. M., 1971 A similar law may govern water freezing in minerals and living organisms Nature 255 261262 10.1038/255261a0.CrossRefGoogle Scholar
Brown, G., 1961 The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society, Jarrold and Sons.Google Scholar
Brun, M., Lallemand, A., Quinson, J. F. and Eyraud, C., 1978 A new method for the simultaneous determination of the size and the shape of the pores Thermochim. Act. 21 5988 10.1016/0040-6031(77)85122-8.CrossRefGoogle Scholar
Charoenrein, S. and Reid, D. S., 1989 The use of DSC to study the kinetics of heterogeneous and homogeneous nu-cleation of ice in aqueous systems Thermochim. Act. 156 373381 10.1016/0040-6031(89)87204-1.CrossRefGoogle Scholar
Cuperus, F. P., Bargeman, D. and Smolders, C. A., 1992 Critical points in the analysis of membrane pore structures by thermoporometry J. Membr. Sci. 66 4553 10.1016/0376-7388(92)80090-7.CrossRefGoogle Scholar
Dedyulya, I. V. and Churaev, N. V., 1988 Viscosity of nonfreezing interlayers of aqueous electrolyte solutions between ice and silicate surface Coll. J. USSR 50 2 232236.Google Scholar
Deer, W. A., Howie, R. A. and Zussman, J., 1962 Rock Forming Minerals, Vol. 32 Sheet Silicates London Longmans 170190.Google Scholar
Ehrburger, F., Querin, V. and Lahaye, J., 1985 DTA studies of sol and gel structures in aqueous dispersions of py-rogenic silicas Colloids and Surfaces 14 3145 10.1016/0166-6622(85)80039-1.CrossRefGoogle Scholar
Emistün, B. V., Gunnink, B. W. and Demirel, T., 1990 Phase transition porosimetry and surface area determination J. Coll. Interf. Sci. 134 264274 10.1016/0021-9797(90)90274-R.CrossRefGoogle Scholar
Everett, D. H., 1961 The thermodynamics of frost damage to porous solids Transactions of the Faraday Society 57 15411551 10.1039/tf9615701541.CrossRefGoogle Scholar
Fripiat, J. J. and della Faille, M., 1967 Surface properties and texture of chrysotiles Clays & Clav Minerals 15 305320 10.1346/CCMN.1967.0150134.CrossRefGoogle Scholar
Hench, L. L. and West, J. K., 1990 The sol-gel process Chem. Rev. 90 3372 10.1021/cr00099a003.CrossRefGoogle Scholar
Higuti, I. and Iwagami, Y., 1952 Calorimetric evidence for the capillary condensation theory J. Phvs. Chem. 56 921927 10.1021/j150499a025.CrossRefGoogle Scholar
Jackson, C. J. and McKenna, G. B., 1992 A reexamination of the freezing and melting of solvent in thermoreversible polymer gels and related systems ASC Polymer Preprints 32 439440.Google Scholar
Jallut, C., Lenoir, J., Bardot, C. and Eyraud, C., 1992 Thermoporometry. Modelling and simulation of a mesoporous solid J. Membr. Sci. 68 271282 10.1016/0376-7388(92)85028-H.CrossRefGoogle Scholar
Jolicoer, C. and Duchesne, D., 1981 Infrared and ther-mogravimetric studies of the thermal degradation of chrysotile asbestos fibres, evidence for matrix effects Can. J. Chem. 59 15211526 10.1139/v81-223.CrossRefGoogle Scholar
Low, P. F., Anderson, D. M. and Hoekstra, P., 1968 Some thermodynamic relationships for soils at or below the freezing point. 1. Freezing point depression and heat capacity Water Resources Research 4 2 379394 10.1029/WR004i002p00379.CrossRefGoogle Scholar
Lowell, S. and Shields, J. E., 1984 Powder Surface Area and Porosity 2 London Chapman and Hall 10.1007/978-94-009-5562-2.CrossRefGoogle Scholar
Luys, M.-J. de Roy, G., Vansant, E. F. and Adams, F., 1982 Characterization of asbestos minerals, structural aspects and infrared spectra J. Chem. Soc., Faraday Trans. 78 35613571 10.1039/f19827803561.CrossRefGoogle Scholar
Miller, R. D., 1973 The porous phase barrier and crystallization Separation Science 8 5 521535 10.1080/00372367308057043.CrossRefGoogle Scholar
Noll, W., and Kircher, H., (1951) Uber die morphologie von asbesten und ihren Zusammenhang mit der kristallstructur: Neues Jahrbuch für Mineralogie, Monatshefte, O’Daniel, H., Scheumann, K. H., and Schneiderhöhn, H., eds., 219240.Google Scholar
Noll, W., Kircher, H. and Sybertz, W., 1958 Adsorptionsvermögen und spezifische Oberfläche von Silikaten mit röhrenförmig gebauten Primärkristallen Kolloid Zeitschrift 157 111 10.1007/BF01734028.CrossRefGoogle Scholar
Plooster, M. N. and Gitlin, S. N., 1971 Phase transitions in water adsorbed on silica surfaces J. Phys. Chem. 75 33223326 10.1021/j100690a021.CrossRefGoogle Scholar
Quinson, J. F., Astier, M. and Brun, M., 1987 Determination of surface areas by thermoporometry Appl. Catal. 30 123130 10.1016/S0166-9834(00)81016-7.CrossRefGoogle Scholar
Sakomoto, T., Nakamura, H., Uedaira, H. and Wada, A., 1989 High-frequency dielectric relaxation of water bound to hydrophylic silica gels J. Phys. Chem. 93 357366 10.1021/j100338a069.CrossRefGoogle Scholar
Sasthav, M., Raj, W R P and Cheung, H. M., 1992 Characterization of microporous polymeric materials. Pore continuity and size distribution via thermal analysis J. Coll. Interf. Sci. 152 2 376385 10.1016/0021-9797(92)90040-S.CrossRefGoogle Scholar
Scherer, G. W., 1993 Freezing gels J. Non-Crystal. Sol. 155 125 10.1016/0022-3093(93)90467-C.CrossRefGoogle Scholar
Scholten, J J F Beers, A. M. and Kiel, A. M., 1975 Studies on pore structure of adsorbents and Catalysts J. of Catal. 36 2329 10.1016/0021-9517(75)90005-6.CrossRefGoogle Scholar
Suquet, H., 1989 Effects of dry grinding and leaching on the crystal structure of chrysotile Clays & Clay Minerals 37 439445 10.1346/CCMN.1989.0370507.CrossRefGoogle Scholar
Takagi, S., 1990 Approximate thermodynamics of the liquid-like layer on an ice sphere based on an interpretation of the wetting parameter J. Coll. Interf. Sci. 137 446455 10.1016/0021-9797(90)90419-O.CrossRefGoogle Scholar
Tasaka, M., Suzuki, S., Ogawa, Y. and Kamaya, M., 1988 Freezing and nonfreezing water in charged membranes J. of Membran. Sci. 38 175183 10.1016/S0376-7388(00)80878-9.CrossRefGoogle Scholar
Titulaer, M. K., (1993) Porous structure and particle size of silica and hydrotalcite catalyst precursors: Thesis, Rijksu-niversiteit Utrecht, Geologica Ultraiectina 99, 268 pp.Google Scholar
Van der Grift, C J G Boon, A Q M van Veldhuisen, A J W Trommar, H G J Geus, J. W., Quinson, J. F. and Brun, M., 1990 Preparation and characterization of porous silica spheres containing a copper(oxide) catalyst Applied Catalysis 65 225239 10.1016/S0166-9834(00)81599-7.CrossRefGoogle Scholar
Wicks, F. J., O’Hanley, D. S. and Bailey, S. W., 1988 Serpentine minerals, structure and petrology Reviews in Mineralogy: Hydrous Phyllosilicates (Exclusive of Micas) Chelsea and Michigan BookCrafters 91129 10.1515/9781501508998-010.CrossRefGoogle Scholar
Yariv, S. and Heller-Kallai, L., 1975 The relationship between the I.R. spectra of serpentines and their structures Clays & Clay Minerals 23 145152 10.1346/CCMN.1975.0230210.CrossRefGoogle Scholar
Yazynina, I. V., Kvlividze, V. I. and Krasnushkin, A. V., 1987 Thickness of the nondissolving layer of water on a hydrophylic surface Coll. J. USSR 49 11881194.Google Scholar
Young, G. J. and Healy, F. H., 1954 The physical structure of asbestos J. Phys. Chem. 58 881886 10.1021/j150520a019.CrossRefGoogle Scholar
Zussman, J., Brindley, G. W. and Comer, J. J., 1957 Electron diffraction studies of serpentine minerals Amer. Mineral. 42 133153.Google Scholar