Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T05:59:23.526Z Has data issue: false hasContentIssue false

Characterization of Octahedral Substitutions in Kaolinites Using Near Infrared Spectroscopy

Published online by Cambridge University Press:  28 February 2024

S. Petit
Affiliation:
Université de Poitiers, UMR CNRS 6532 “Hydr.A.S.A”, 40, avenue du recteur Pineau, F-86022 Poitiers CEDEX, France
J. Madejová
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-842 36 Bratislava, Slovakia
A. Decarreau
Affiliation:
Université de Poitiers, UMR CNRS 6532 “Hydr.A.S.A”, 40, avenue du recteur Pineau, F-86022 Poitiers CEDEX, France
F. Martin
Affiliation:
Université Paul Sabatier, Laboratoire de Minéralogie-Cristallographie, UMR 5563 CNRS, 39 Allées Jules Guesde, F-31000 Toulouse, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fourier transform infrared (FTIR) spectroscopy investigations in the near infrared (N1R) region of synthetic and natural kaolinites with various octahedral substitutions have been carried out in order to elucidate the relationships between the substituted cations and specific features of the NIR spectra. The combination modes of the OH stretching and bending vibrations characterizing Fe(III), Ga(III) and Cr(III) octahedral substitutions are identified in the NIR region at 4466, 4498 and 4474 cm-1, respectively, and the first overtones of the OH stretching vibrations at 7018, 7018 and 6986 cm-1, respectively. As far as we know, the bands of kaolinites containing Ga(III) or Cr(III) have not been reported yet. For both Ga(III) and Cr(III), the NIR observations explain why the bending vibration bands of AlGaOH and AlCrOH groups are not observed in the middle infrared (MIR) region.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Alpert, N.L. Keiser, W.E. and Szymanski, H.A., 1964 IR—Theory and practice of infrared spectroscopy New York Plenum Pr.Google Scholar
Bell, V.B.A. Citro, V.R. and Hodge, G.D., 1991 Effect of pellet pressing on the infrared spectrum of kaolinite Clays Clay Miner 39 290292 10.1346/CCMN.1991.0390309.CrossRefGoogle Scholar
Besson, G. and Drits, V.A., 1997 Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part II: The main factors affecting OH vibrations and quantitative analysis Clays Clay Miner 45 170183 10.1346/CCMN.1997.0450205.CrossRefGoogle Scholar
Bishop, J.L. Pieters, C.M. and Edwards, J.O., 1994 Infrared spectroscopic analyses on the nature of water in montmorillonite Clays Clay Miner 42 702716 10.1346/CCMN.1994.0420606.CrossRefGoogle Scholar
Brookins, D.G., 1973 Chemical and X-ray investigation of chromiferous kaolinite (“miloschite”) from The Geysers, Sonoma County, California Clays Clay Miner 21 421422 10.1346/CCMN.1973.0210518.CrossRefGoogle Scholar
Cariati, F. Erre, L. Micera, G. Piu, P. and Gessa, C., 1981 Water molecules and hydroxyl groups in montmorillonites as studied by near infrared spectroscopy Clays Clay Miner 29 157159 10.1346/CCMN.1981.0290211.CrossRefGoogle Scholar
Cariati, F. Erre, L. Micera, G. Piu, P. and Gessa, C., 1983 Polarization of water molecules in phyllosilicates in relation to exchange cations as studied by near infrared spectroscopy Clays Clay Miner 31 155157 10.1346/CCMN.1983.0310211.CrossRefGoogle Scholar
Cariati, F. Erre, L. Micera, G. Piu, P. and Gessa, C., 1983 Effects of layer charge on the near infrared spectra of water molecules in smectites and vermiculites Clays Clay Miner 31 447449 10.1346/CCMN.1983.0310606.CrossRefGoogle Scholar
Cases, J.M. Cunin, P. Grillet, Y. Poinsignon, C. and Yvon, J., 1986 Methods of analyzing morphology of kaolinite: Relations between crystallographic and morphological properties Clay Miner 21 5568 10.1180/claymin.1986.021.1.05.CrossRefGoogle Scholar
Crowley, J.K. and Vergo, N., 1988 Near-infrared reflectance spectra of mixtures of kaolin-group minerals: Use in clay mineral, studies Clays Clay Miner 36 310316 10.1346/CCMN.1988.0360404.CrossRefGoogle Scholar
Decarreau, A. Grauby, O. and Petit, S., 1992 The actual distribution of octahedral cations in 2:1 clay minerals: Results from clay synthesis Appl Clay Sci 7 147167 10.1016/0169-1317(92)90036-M.CrossRefGoogle Scholar
Delineau, T. Allard, T. Muller, J.P. Barres, O. Yvon, J. and Cases, J.M., 1994 FTIR reflectance vs. EPR studies of structural iron in kaolinites Clays Clay Miner 42 308320 10.1346/CCMN.1994.0420309.CrossRefGoogle Scholar
Gaite, J.M. and Mosser, C., 1993 Experimental and modelized electron paramagnetic resonance spectra of Cr(III) in kaolinites J Phys Condens Matter 5 49294934 10.1088/0953-8984/5/28/008.CrossRefGoogle Scholar
Hlavay, J. Jonas, K. Elek, S. and Inczedy, J., 1977 Characterization of the particle size and the crystallinity of certain minerals by infrared spectrophotometry and other instrumental methods—I. Investigations on clay minerals Clays Clay Miner 25 451456 10.1346/CCMN.1977.0250611.CrossRefGoogle Scholar
Hunt, G.R. and Salisbury, J.W., 1970 Visible and infrared spectra of minerals and rocks: I. Silicate minerals Modern Geol 1 283300.Google Scholar
Hunt, G.R. Salisbury, J.W. and Lenhoff, C.J., 1973 Visible and infrared spectra of minerals and rocks: VI. Additional silicate Modern Geol 4 85106.Google Scholar
Jepson, W.B. and Rowse, J.B., 1975 The composition of kaolinite. An electron microscope microprobe study Clays Clay Miner 23 310317 10.1346/CCMN.1975.0230407.CrossRefGoogle Scholar
Kato, E. Kanaoka, S. and Inagaki, S., 1977 Infrared spectra of kaolin minerals in OH region (I); on the glass slide method for the measurement of the infrared spectra in OH region of clay minerals Rept Govt Industr Agoya 26 203210.Google Scholar
De Kimpe, C. Kodama, H. and Rivard, R., 1981 Hydrothermal formation of kaolinite material from aluminosilicate gels Clays Clay Miner 29 446450 10.1346/CCMN.1981.0290605.CrossRefGoogle Scholar
Lindberg, J.D. and Snyder, D.G., 1972 Diffuse reflectance spectra of several clay minerals Am Mineral 57 485493.Google Scholar
Madejová, J. Komadel, P. and Cícel, B., 1994 Infrared study of octahedral site populations in smectites Clay Miner 29 319326 10.1180/claymin.1994.029.3.03.CrossRefGoogle Scholar
Maksimovic, Z. and Brindley, G.W., 1980 Hydrothermal alteration of a serpentinite near Takovo, Yugoslavia, to chromium-bearing illite/smectite, kaolinite, tosudite, and halloysite Clays Clay Miner 28 295302 10.1346/CCMN.1980.0280408.CrossRefGoogle Scholar
Maksimovic, Z. White, J.L. and Serratosa, J.M., 1973 Infrared study of chromium-bearing halloysites Proc Int Clay Conf. 6173.Google Scholar
Maksimovic, Z. White, J.L. and Logar, M., 1981 Chromium-bearing dickite and chromium-bearing kaolinite from Teslic, Yugoslavia Clays Clay Miner 29 213218 10.1346/CCMN.1981.0290307.CrossRefGoogle Scholar
Martin, F. Petit, S. Decarreau, A. Ildefonse, P. Grauby, O. de Bé-ziat, D. Parseval, P. and Noack, Y., 1998 Ga/Al substitutions in synthetic kaolinites and smectites Clay Miner 33 231241 10.1180/000985598545598.CrossRefGoogle Scholar
Mendelovici, E. Yariv, S.H. and Villalba, R., 1979 Iron-bearing kaolinite in Venezuelan laterite. I. Infrared spectroscopy and chemical dissolution evidence Clay Miner 14 323331 10.1180/claymin.1979.014.4.08.CrossRefGoogle Scholar
Mosser, C. Petit, S. and Mestdagh, M., 1993 ESR and IR evidences for chromium in kaolinites Clay Miner 28 353364 10.1180/claymin.1993.028.3.02.CrossRefGoogle Scholar
Muller, J.P. and Calas, G., 1989 Tracing kaolinites through their defect centers; kaolinite paragenesis in a laterite (Cameroon) Econ Geol 84 694707 10.2113/gsecongeo.84.3.694.CrossRefGoogle Scholar
Petit, S. and Decarreau, A., 1990 Hydrothermal (200 °C) synthesis and crystal chemistry of iron-rich kaolinites Clay Miner 25 181196 10.1180/claymin.1990.025.2.04.CrossRefGoogle Scholar
Petit, S. Decarreau, A. Mosser, C. Ehret, G. and Grauby, O., 1995 Hydrothermal synthesis (250 °C) of copper-substituted kaolinites Clays Clay Miner 43 482494 10.1346/CCMN.1995.0430413.CrossRefGoogle Scholar
Petit, S. Robert, J.L. Decarreau, A. Besson, G. Grauby, O. and Martin, F., 1995 Apport des méthodes spectroscopiques à la car-actérisation des phyllosilicates 2:1 Bull Elf Aquitaine Prod 19.1 119147.Google Scholar
Pontual, S. and Cocks, T., 1994 The Pirna II: A new technique for field-based alteration mapping 393398.Google Scholar
Post, J.L. and Noble, P.N., 1993 The near-infrared combination band frequencies of dioctahedral smectites, micas, and illites Clays Clay Miner 41 639644 10.1346/CCMN.1993.0410601.CrossRefGoogle Scholar
Rengasamy, P., 1976 Substitution of iron and titanium in kaolinites Clays Clay Miner 24 264266 10.1346/CCMN.1976.0240509.CrossRefGoogle Scholar
Robert, J.L. and Kodama, H., 1988 Generalization of the correlations between hydroxyl-stretching wavenumbers and composition of micas in the system K2O-MgO-Al2O3-SiO2-H2O: A single model for trioctahedral and dioctahedral micas Am J Sci 288–A 199212.Google Scholar
Singh, B. and Gilkes, R.J., 1991 Weathering of a chromian mus-covite to kaolinite Clays Clay Miner 39 571579 10.1346/CCMN.1991.0390602.CrossRefGoogle Scholar
Stubican, V. and Roy, R., 1961 A new approach of assignment of infra-red absorption bands in layer-structure silicates Z Kristall Bd 115 S:200 214 10.1524/zkri.1961.115.3-4.200.CrossRefGoogle Scholar
Tomura, S. Shibasaki, Y. Mizuta, H. and Kitamura, M., 1985 Growth conditions and genesis of spherical and platy kaolinite Clays Clay Miner 33 200206 10.1346/CCMN.1985.0330305.CrossRefGoogle Scholar
Vedder, W., 1964 Correlations between infrared spectrum and chemical composition of mica Am Mineral 49 736768.Google Scholar
Weaver, C.E., 1976 The nature of TiO2 in kaolinite Clays Clay Miner 24 215218 10.1346/CCMN.1976.0240501.CrossRefGoogle Scholar