Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T09:27:39.027Z Has data issue: false hasContentIssue false

Characterization of Hydrothermal Tobelitic Veins from Black Shale, Oquirrh Mountains, Utah

Published online by Cambridge University Press:  28 February 2024

Paula N. Wilson
Affiliation:
Department of Geology and Geophysics, 717 William Browning Building, University of Utah, Salt Lake City, Utah 84112
W. T. Parry
Affiliation:
Department of Geology and Geophysics, 717 William Browning Building, University of Utah, Salt Lake City, Utah 84112
W. P. Nash
Affiliation:
Department of Geology and Geophysics, 717 William Browning Building, University of Utah, Salt Lake City, Utah 84112
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydrothermal tobelitic phyllosilicates modeled as ISII (R3) ordering with a minimum of 2–3% and a maximum of 6–8% interstratified smectite occur in veins and as replacement of fossils in hydrothermally altered black shale. These heavy metal-rich phyllosilicate veins formed during a Mesozoic-aged, regional-scale hydrothermal event that affected an area which encompasses the Mercur Au district (Wilson and Parry, 1990a, 1990b). Associated minerals include kaolinite, quartz, chlorite, Fe-oxides, I/S (R1, 45% smectite), and pyrite. N and O contents of NH4 phyllosilicates determined by microprobe analysis range from 0.19 to 1.78 and 48.6 to 52.9 elemental wt. %, respectively. Infrared absorption analysis indicates N occurs as NH4+. Very high O analyses are probably caused by contamination with kaolinite. A representative structural formula for the tobelitic material is [(NH4)0.36K0.36Na0.03]-(Al1.91Mg0.13Fe0.03)(Si3.21Al0.79)O10(OH1.88F0.12).

Correlation plots of data from microprobe analyses indicate an atypically high correlation between interlayer charge and octahedral layer charge and no correlation between (K+Na) and N. More typical correlations between N and (K+Na) and between interlayer charge and tetrahedral layer charge are obtained if 2–8% of a beidellitic smectite are factored out of the analyses. This amount of smectite is consistent with modeling of X-ray diffraction data using the computer program NEWMOD (Reynolds, 1985).

Possible sources of NH4 are from introduction by hydrothermal fluids or from thermal degradation of organic matter prevalent within the host rocks during low-grade metamorphism. The occurrence of NH4 phyllosilicate veins in unoxidized shale and the limited occurrence of NH4 phyllosilicates within the host shales suggests a hydrothermal source for the NH4.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Ahn, J. H. and Peacor, D. R., 1989 Illite/smectite from Gulf Coast shales: A reappraisal of transmission electron microscope images Clays & Clay Minerals 37 542546 10.1346/CCMN.1989.0370606.Google Scholar
Armstrong, J. T. and Newbury, D. E., 1988 Accurate quantitative analysis of oxygen and nitrogen with a W/Si multilayer crystal Microbeam Analysis-1988 301304.Google Scholar
Bastin, C. F., Heijligers, H. J. M., Heinrich, K F J and Newbury, D. E., 1991 Quantitative electron probe microanalysis of ultra-light elements (boronoxygen) Electron Probe Quantitation New York Plenum Press 145161 10.1007/978-1-4899-2617-3_8.CrossRefGoogle Scholar
Bastin, C. F. and Heijligers, H. J. M., 1991 Quantitative electron probe microanalysis of nitrogen Scanning 13 325342 10.1002/sca.4950130502.CrossRefGoogle Scholar
Bastin, C. F., Heijligers, H J M Pinxter, J. F. and Newbury, D. E., 1988 Quantitative EPMA of nitrogen in Ti-N compounds Microbeam Analysis-1988 290294.Google Scholar
Bloomstein, E., Kydd, R. A., and Levinson, A. A., (1987) Development of ammonium geochemistry as a new technique in precious and base metals exploration: Journal of Geochemical Exploration 29, 386.CrossRefGoogle Scholar
Cooper, J. E. and Abedin, K. E., 1981 The relationship between fixed ammonium-nitrogen and potassium in clays from a deep well on the Texas Gulf Coast Texas Journal of Science 33 103111.Google Scholar
Duit, W., Jansen, J B H Breemen, A. V. and Bos, A., 1986 Ammonium micas in metamorphic rocks as exemplified by Dome de L’Agout (France) Amer. J. Sci 286 702732 10.2475/ajs.286.9.702.CrossRefGoogle Scholar
Eberl, D. D. and Srodon, J., 1988 Ostwald ripening and interparticle-diffraction effects for illite crystals Amer. Mineral 73 13351345.Google Scholar
Gilluly, J., 1932 Geology and ore deposits of the Stockton and Fairfield quadrangles 10.3133/pp173.CrossRefGoogle Scholar
Henke, B. L., Lee, P., Tanake, T J S and Fujikawa, B. K., 1982 Low-energy X-ray interaction coefficients: Photoabsorption, scattering, and reflection Atomic Data and Nuclear Data Tables 27 1144 10.1016/0092-640X(82)90002-X.CrossRefGoogle Scholar
Higashi, S., 1982 Tobelite, a new ammonium dioctahedral mica Mineralogical Journal 11 138146 10.2465/minerj.11.138.CrossRefGoogle Scholar
Inoue, A. and Utada, M., 1983 Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, northeast Japan Clays & Clay Minerals 31 401412 10.1346/CCMN.1983.0310601.CrossRefGoogle Scholar
Jewell, P. W. and Parry, W. T., 1988 Geochemistry of the Mercur gold deposit (Utah, U.S.A.) Chemical Geology 69 245265 10.1016/0009-2541(88)90038-1.CrossRefGoogle Scholar
Juster, T. C., Brown, P. E. and Bailey, S. W., 1987 NH4-bearing illite in very low grade metamorphic rocks associated with coal, northeastern Pennsylvania Amer. Mineral 72 555565.Google Scholar
Kornze, L. D., 1987 Geology of the Mercur gold mine Bulk Mineable Precious Metal Deposits of the Western United States, Guidebook for Field Trips 381389.Google Scholar
Krohn, M. D., Altaner, S. P., Hayba, D. O., Schafer, R. W., Cooper, J. J. and Vikre, P. G., 1988 Distribution of ammonium minerals at Hg/Au-bearing hot spring deposits: Initial evidence from near-infrared spectral properties Bulk Mineable Precious Metal Deposits of the Western United States, Symposium Proceedings 661679.Google Scholar
Kydd, R. A. and Levinson, A. A., 1986 Ammonium halos in lithogeochemical exploration for gold at the Horse Canyon carbonate-hosted deposit, Nevada, U.S.A.: Use and limitations Applied Geochemistry 1 407417 10.1016/0883-2927(86)90025-9.CrossRefGoogle Scholar
Lagaly, G., 1984 Clay-organic reactions Phil. Trans. R. Soc. London 311 315332 10.1098/rsta.1984.0031.Google Scholar
Lindgreen, H., Jacobsen, H. and Jakobsen, H. J., 1991 Diagenetic structural transformations in North Sea Jurassic illite/smectite Clays & Clay Minerals 39 5469 10.1346/CCMN.1991.0390108.CrossRefGoogle Scholar
Love, G. and Scott, V. D., 1987 Progress in the EPMA of light elements Inst. Phys. Conf. Ser 11 349352.Google Scholar
Moore, D. M. and Reynolds, R. C., 1989 X-ray Diffraction and the Identification Analysis of Clay Minerals New York Oxford University Press.Google Scholar
Nash, W. P., 1992 Analysis of oxygen with the electron microprobe: Applications to hydrated glass and minerals Amer. Mineral 77 453456.Google Scholar
Newman, A C D Brown, G. and Newman, A. C. D., 1987 The chemical constitution of clays Chemistry of Clays and Clay Minerals New York John Wiley and Sons 1128.Google Scholar
Pouchou, J. L., Pichoir, F., Heinrich, K F J and Newbury, D. E., 1991 Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP” Electron Probe Quantitation New York Plenum Press 3175 10.1007/978-1-4899-2617-3_4.CrossRefGoogle Scholar
Reynolds, R. C., 1985 Description of Program NEWMOD for the Calculation of the One-dimensional X-ray Diffraction Patterns of Mixed-layered Clays Hanover, New Hampshire Dept. of Earth Sciences, Dartmouth College.Google Scholar
Ridgway, J., Appleton, J. D. and Levinson, A. A., 1990 Ammonium geochemistry in mineral exploration—A comparison of results from the American Cordilleras and the southwest Pacific Applied Geochemistry 5 475489 10.1016/0883-2927(90)90022-W.CrossRefGoogle Scholar
Ridgway, J., Martiny, B., Gomez-Caballero, A., Macias-Romo, C. and Villasenor-Cabral, M. G., 1991 Ammonium geochemistry of some Mexican silver deposits Journal of Geochemical Exploration 40 311327 10.1016/0375-6742(91)90045-V.CrossRefGoogle Scholar
Shigorova, T. A., 1982 The possibility of determining ammonium content of mica by IR spectroscopy Geochemistry International 2 110114.Google Scholar
Shigorova, T. A., Kotov, N V K Ye N Shmakin, B. M. and Frank-Kamenetskiy, V. A., 1981 Synthesis, diffractometry, and IR spectroscopy of micas in the series from muscovite to the ammonium analog Geochemistry International 3 7682.Google Scholar
Srodon, J., 1984 X-ray powder diffraction identification of illitic materials Clays & Clay Minerals 32 337349 10.1346/CCMN.1984.0320501.CrossRefGoogle Scholar
Srodon, J. and Eberl, D. D., 1984 Illite Micas 3 495544 10.1515/9781501508820-016.CrossRefGoogle Scholar
Srodon, J., Andreoli, C., Elsass, F. and Robert, M., 1990 Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rock Clays & Clay Minerals 38 373379 10.1346/CCMN.1990.0380406.CrossRefGoogle Scholar
Sterne, E. J., Reynolds, R. C. Jr. and Zantop, H., 1982 Natural ammonium illites from black shales hosting a stratiform base metal deposit, DeLong Mountains, Northern Alaska Clays & Clay Minerals 30 161166 10.1346/CCMN.1982.0300301.CrossRefGoogle Scholar
Sterne, E. J., Zantop, H. and Reynolds, R. C., 1984 Clay mineralogy and carbon-nitrogen geochemistry of the Lik and Competition Creek zinc-lead-silver prospects, DeLong Mountains, Alaska Economic Geology 79 14061411 10.2113/gsecongeo.79.6.1406.CrossRefGoogle Scholar
Sucha, V. and Siranova, V., 1991 Ammonium and potassium fixation in smectite by wetting and drying Clays & Clay Minerals 39 556559 10.1346/CCMN.1991.0390511.CrossRefGoogle Scholar
Veblen, D. R., Guthrie, G. D., Livi, K J T and Reynolds, R. C., 1990 High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results Clays & Clay Minerals 38 113 10.1346/CCMN.1990.0380101.CrossRefGoogle Scholar
Vedder, W., 1965 Ammonium muscovite Geochim. Cosmochim. Acta 29 221228 10.1016/0016-7037(65)90019-0.CrossRefGoogle Scholar
Voncken, J H L Konings, R J M Jansen, J B H and Woensdregt, C. F., 1988 Hydrothermally grown buddingtonite, an anyhydrous ammonium feldspar (NH4AlSi3Os) Physics and Chemistry of Minerals 15 323328 10.1007/BF00311036.CrossRefGoogle Scholar
Voncken, J H L Wevers, J M A R v d Eerden, A M J Bos, A. and Jansen, J. B. H., 1987 Hydrothermal synthesis of tobelite, NH4Al2Si3AlO10(OH)2 from various starting materials and implications for its occurrence in nature Geologie en Mijnbouw 66 259269.Google Scholar
Von Damm, K. L., Edmond, J. M., Measures, C. I. and Grant, B., 1985 Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California Geochim Cosmochim. Acta 49 22212237 10.1016/0016-7037(85)90223-6.CrossRefGoogle Scholar
Watanabe, T., 1981 Identification of illite/montmorillonite interstratifications by X-ray powder diffraction J. Miner. Soc. Japan, Spec. Issue .CrossRefGoogle Scholar
Williams, L. B. and Ferrell, R. E. Jr., 1991 Ammonium substitution in illite during maturation of organic matter Clays & Clay Minerals 39 400408 10.1346/CCMN.1991.0390409.CrossRefGoogle Scholar
Williams, L. B., Zantop, H. and Reynolds, R. C., 1987 Ammonium silicates associated with sedimentary exhala-tive ore deposits: a geochemical exploration tool Journal of Geochemical Exploration 27 125141 10.1016/0375-6742(87)90008-2.CrossRefGoogle Scholar
Williams, L. B., Ferrell, R. E. Jr. Chinn, E. W. and Sassen, R., 1989 Fixed-ammonium in clays associated with crude oils Applied Geochemistry 4 605616 10.1016/0883-2927(89)90070-X.CrossRefGoogle Scholar
Wilson, P. N., and Parry, W. T., (1989) Geochemical characteristics of hydrothermally altered black shales of the southern Oquirrh Mountains and relationships to Mercur-type gold deposits: Utah Geol. and Mineral Survey Open File Report 161, 64 pp.Google Scholar
Wilson, P. N. and Parry, W. T., 1990 Mesozoic hydro-thermal alteration associated with gold mineralization in the Mercur district, Utah Geology 18 866869 10.1130/0091-7613(1990)018<0866:MHAAWG>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Wilson, P. N., Parry, W. T., Hausen, D. M., Halbe, D. N., Petersen, E. U. and Tafuri, W. J., 1990 Geochemistry of Mesozoic hydrothermal alteration of black shales associated with Mercur-type gold deposits Gold ’90, Proceedings from the Gold ’90 Symposium Littleton, Colorado Society of Mining, Metallurgy and Exploration, Inc. 167174.Google Scholar
Yamamoto, T. and Nakahira, M., 1966 Ammonium ions in sericites Amer. Mineral 51 17751778.Google Scholar