Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T19:07:28.515Z Has data issue: false hasContentIssue false

Characterization and Genetic Interpretation of Clays in an Acid Brown Soil (Dystrochrept) Developed in a Granitic Saprolite

Published online by Cambridge University Press:  02 April 2024

Dominique Righi
Affiliation:
UA 721, CNRS, Laboratoires de Pédologie et Pétrologie de altérations hydrothermales, Faculté des Sciences, 86022 Poitiers Cedex, France
Alain Meunier
Affiliation:
UA 721, CNRS, Laboratoires de Pédologie et Pétrologie de altérations hydrothermales, Faculté des Sciences, 86022 Poitiers Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray diffraction and chemical analyses were performed on clay fractions separated from an acid brown soil (Dystrochrept) by means of size fractionations using high-gradient magnetic separation techniques. Breakdown of large phyllosilicates preexisting in the saprolite involved physical fragmentation and mineralogical transformations strongly related to chemical weathering.

Compared to the C horizon, the proportion of chlorite and vermiculite decreased strongly in the silt and coarse-clay fractions of the Al horizon, but was maintained in the finer clay fraction (< 1 μm). The distribution of mica in the different fractions was quite the opposite. Micas are the major component of the Al, 1–2 μm fractions, and their proportion progressively decreased with decreasing fraction size. Thus, it is concluded that during fragmentation and/or simple transformation of the larger phyllosilicates, clusters of chlorite, mica/vermiculite, and vermiculite layers were preferentially affected. A concentration of mica layers took place in the coarse clay fractions as chlorite and vermiculite residues were accumulated in the fine clays.

The process involved the loss of Fe and Mg, leaving, or forming, more aluminous dioctahedral minerals. As the transformation processes occurred, dissolution of preexisting minerals led to the precipitation of amorphous and/or crystalline Fe- and Al-oxides, and possibly of phyllosilicates. The new phyllosilicates appear to be montmorillonitic.

The most abundant end products of the weathering processes in either the Al or the Bw horizons appeared to be quite different. In the Al horizon they were identified mainly a hydroxyl-Al (Fe) intergrade smectite (montmorillonite), whereas in the Bw horizon the major component was an intergrade vermiculite originating, at least in part, from chlorite.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

References

Adams, W. A. and Kassim, J. K., 1983 The origin of vermiculite developed from lower Palaeozoic sedimentary rocks in Mid Wales Soil Sci. Soc. Amer. J. 47 316320.CrossRefGoogle Scholar
Bain, D. C., 1977 The weathering of chloritic minerals in some Scottish soils J. Soil Sci. 28 144164.CrossRefGoogle Scholar
Barnhisel, R. I., Bertsch, P. M., Dixon, J. B. and Weed, S. B., 1989 Chlorites and hydroxy interlayered vermiculite and smectite Minerals in Soil Environments 2nd ed. 729788.CrossRefGoogle Scholar
Buurman, P., van der Plas, L. and Slager, S., 1976 A toposequence of alpine soils on calcareous mica schists, northern Adula region, Switzerland J. Soil. Sci. 27 395410.CrossRefGoogle Scholar
Churchman, G. J., 1980 Clay minerals formed from micas and chlorites in some New Zealand soils Clay Miner. 15 5976.CrossRefGoogle Scholar
CPCS, 1967 Classification des sols.Google Scholar
DeConinck, F., Conry, M. and Tavernier, R., 1975 Influence of iron-bearing minerals, especially chlorite, on soil development of Irish brown podzolic soils Proc. Int. Clay Conf. Wilmette, Illinois Applied Publishing 573584.Google Scholar
DeConinck, F. and Herbillon, A., 1969 Evolution minéralogique et chimique des fractions argileuses dans des Alfisols et des Spodosols de la Campine (Belgique) Pédologie XIX 159272.Google Scholar
Douglas, L. A., 1967 Sodium citrate-dithionite induced alteration of biotite Soil Sci. 103 191195.CrossRefGoogle Scholar
Douglas, L. A., Dixon, J. B. and Weed, S. B., 1989 Vermiculites Minerals in Soil Environments 2nd ed. 635674.CrossRefGoogle Scholar
Fanning, D. S., Keramidas, V. Z., El-Desoky, M. A., Dixon, J. B. and Weed, S. B., 1989 Micas Minerals in Soil Environments 2nd ed. 551634.CrossRefGoogle Scholar
Fordham, A. W., 1990 Formation of trioctahedral illite from biotite in a soil profile over granite gneiss Clays & Clay Minerals 38 187195.CrossRefGoogle Scholar
Ghabru, S. K., Mermut, A. R. and St. Arnaud, R. J., 1990 Isolation and characterization of an iron-rich chlorite-like mineral from soil clays Soil Sci. Soc. Amer. J. 54 281287.CrossRefGoogle Scholar
Gjems, O., 1967 Studies on clay minerals and clay mineral formation in soil profiles in Scandinavia Med. Nor. Skogsgorsoeksues 21 303345.Google Scholar
Greene-Kelly, R., 1953 The identification of montmorillonoids in clays J. Soil Sci. 4 233237.CrossRefGoogle Scholar
Jackson, M. L., 1963 Interlayering of expansible layer silicates in soils by chemical weathering Clays & Clay Minerals 11 2946.CrossRefGoogle Scholar
Jeanroy, E., 1972 Analyse totale des silicates naturels par spectrophotométrie d’absorption atomique. Application au sol et à ses constituants Chim. Anal. 54 159166.Google Scholar
Jeanroy, E., Guillet, B. and Ortiz, R., 1984 Applications pédogénétiques de l’étude des formes du fer par les réactifs d’extraction: cas des sols brunifiés et podzolisés sur roches cristallines Science du Sol 3 199224.Google Scholar
Lanson, B. and Champion, O., 1991 The I/S to illite reaction in diagenesis Amer. J. Sci. .Google Scholar
MacEwan, D. M. C. Wilson, M. J., Brindley, G. W. and Brown, G., 1980 Interlayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 197248.CrossRefGoogle Scholar
Mehra, O. P. and Jackson, M. L., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays & Clay Minerals 7 317327.CrossRefGoogle Scholar
Meunier, A. and Velde, B., 1989 Solid solutions in I/S mixed layer minerals and illite Amer. Mineral. 74 11061112.Google Scholar
Pédro, G., 1983 Structuring of some basic pedological processes Geoderma 31 289299.CrossRefGoogle Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 249304.CrossRefGoogle Scholar
Righi, D. and Borot, J. P., 1985 Présence de sols podzolisés à horizons Bh et Bs inversés sur le Plateau de Millevaches (Massif Central, France) Science du Sol 3 129138.Google Scholar
Righi, D. and Jadault, P., 1988 Improving soil clay minerals studies by high-gradient magnetic separation Clay Miner. 23 225232.CrossRefGoogle Scholar
Ross, G. J., 1975 Experimental alteration of chlorites into vermiculites by chemical oxidation Nature 225 133134.CrossRefGoogle Scholar
Ross, G. J., Wang, C., Ozkan, A. I. and Rees, H. W., 1982 Weathering of chlorite and mica in a New Brunswick podzol developed on till derived from chlorite-mica schist Geoderma 27 255267.CrossRefGoogle Scholar
Russell, J. D., Birnie, A. and Fraser, A. R., 1984 High-gradient magnetic separation (HGMS) in soil clay mineral studies Clay Miner. 19 771778.CrossRefGoogle Scholar
Schwertmann, U., 1976 The weathering of mafic chlorites in soils (a review) Z. Pflanzenern. Bodenk. 1 2736.CrossRefGoogle Scholar
Singleton, P. C. and Harward, M. E., 1971 Iron hydroxy interlayers in soil clay Soil Sci. Soc. Am. Proc. 35 838842.CrossRefGoogle Scholar
Stucki, J. W., Golden, D. C. and Roth, C. B., 1984 Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites Clays & Clay Minerals 32 350356.CrossRefGoogle Scholar
Tamura, T., 1958 Identification of clay minerals from acid soils J. Soil Sci. 9 141147.CrossRefGoogle Scholar
USDA, 1986 Clés de la taxonomy des sols.Google Scholar
Vicente, M. A., Razzaghe, M. H. and Robert, M., 1977 Formation of aluminium hydroxy vermiculite (intergrade) and smectite from mica under acidic conditions Clay Miner. 12 101112.CrossRefGoogle Scholar
Vicente-Hernandez, J., Vicente, M. A., Robert, M. and Goodman, B. A., 1983 Evolution des biotites en fonction des conditions d’oxydo-réduction du milieu Clay Miner. 18 267275.CrossRefGoogle Scholar
Weed, S. B. and Bowen, L. H., 1990 High-gradient magnetic concentration of chlorite and hydroxy-interlayered minerals in soils clays Soil Sci. Soc. Amer. J. 54 274280.CrossRefGoogle Scholar
Wilson, M. J., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Soil smectites and related interstratified minerals: Recent developments Proc. Int. Clay Conf., Denver, 1985 Bloomington, Indiana The Clay Minerals Society 167173.Google Scholar