Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T11:53:23.926Z Has data issue: false hasContentIssue false

Brønsted Acidification Observed during Hydrothermal Treatment of a Calcium Montmorillonite

Published online by Cambridge University Press:  28 February 2024

Robert B. Heimann*
Affiliation:
Department of Mining, Metallurgical, and Petroleum Engineering, University of Alberta, Edmonton, Alberta, Canada T6G2G6
*
1Present address: Institute for Mineralogy and Geochemistry, Freiberg University of Mining and Technology, D-09596 Freiberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An aluminous Ca-montmorillonite from southern Manitoba, Canada, has been shown to generate very low pH values in clay/groundwater slurries over a range of ionic strength of the groundwater (fresh and saline) and temperatures from 25°–90°C. Dialysis experiments as well as results of X-ray diffraction and FTIR vibration spectroscopy point to an acidification mechanism that involves hydrolysis of exchangeable Al3+ ions, thus releasing protons, and the subsequent intercalation of gibbsite-like hydroxy-Al complexes into the smectite lattice forming a non-expandable “Al”-montmorillonite.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Abry, D. M. R., Abry, R. G. F., Ticknor, K. V., and Vandergraaf, T. T., (1982) Procedures to determine sorption coefficients on rock coupons under static conditions: Atomic Energy of Canada Limited Technical Record TR-189.Google Scholar
Baes, C. F. and Mesmer, R. E., 1976 The Hydrolysis of Cations New York John Wiley & Sons 122.Google Scholar
Benson, L. V., and Teague, L. S., (1980) A tabulation of thermodynamic data for chemical reactions involving 58 elements common to radioactive waste package systems: Rockwell Hanford Operations International Topical Report 4.Google Scholar
Bloom, P. R., McBride, M. B. and Chadbourne, B., 1977 Adsorption of aluminum by a smectite: I. Surface hydrolysis during Ca2+-Al3+ exchange Soil Sci. Soc. Amer. J. 42 1068 10.2136/sssaj1977.03615995004100060010x.CrossRefGoogle Scholar
Box, G E P and Behnken, D. W., 1960 Some new three level designs for the study of quantitative variables Tech-nometrics 2 455.Google Scholar
Brindley, G. W., and Brown, G., (1980) Crystal structures of the clay minerals and their X-ray identification: Mineralogical Society Monograph 5.Google Scholar
Bruggenwert, M E M and Kamphorst, A., 1979 Survey of experimental information on cation exchange in soil systems Soil Chemistry New York Elsevier Publishing Co. Inc. 141302.Google Scholar
Carstea, D. D., (1967) Formation and stability of aluminium, iron and magnesium interlayers in montmorillonite and vermiculite: Ph.D. thesis, Oregon State University, Corvallis, Oregon.Google Scholar
Carstea, D. D., 1968 Formation of hydroxy-Al and -Fe interlayers in montmorillonite and vermiculite: Influence of particle size and temperature Clays & Clay Minerals 16 231238 10.1346/CCMN.1968.0160305.CrossRefGoogle Scholar
Eberl, D. D., 1978 Reaction series for dioctahedral smectites Clays & Clay Minerals 26 327 10.1346/CCMN.1978.0260503.CrossRefGoogle Scholar
El-Rayah, H M E and Rowell, D. L., 1973 The influence of iron and the permeability of a Na-soil J. Soil Sci. 24 137144 10.1111/j.1365-2389.1973.tb00749.x.CrossRefGoogle Scholar
Foseolos, A. E., 1968 Cation exchange equilibrium constants of aluminium saturated montmorillonite and vermiculite clays Soil Sci. Soc. Amer. Proc. 32 350354 10.2136/sssaj1968.03615995003200030026x.CrossRefGoogle Scholar
Foumier, R. O., (1983) Self-sealing and brecciation resulting from quartz deposition within hydrothermal systems: Proceedings of the 4th International Symposium on Water-Rock Interactions, Misasa, Japan, 137140.Google Scholar
Frape, S. K., Fritz, P. and McNutt, R. H., 1984 Water-rock interaction and chemistry of groundwater from the Canadian Shield Geochim. Cosmochim. Acta 48 16171627 10.1016/0016-7037(84)90331-4.CrossRefGoogle Scholar
Gast, R. G., Dixon, J. B. and Wood, S. B., 1977 Surface and colloid chemistry Minerals in Soil Environment Madison, Wisconsin Soil Sci. Soc. Am. 2773.Google Scholar
Gerstl, Z. and Banin, A., 1980 Fe2+-Fe3+transformations in clay and resin ion-exchange systems Clays & Clay Minerals 28 335 10.1346/CCMN.1980.0280503.CrossRefGoogle Scholar
Goodwin, B. W., and Munday, M., (1983) A reference guide to SOLMNQ—An interactive solution-mineral equilibrium program: Atomic Energy of Canada Limited Report AECL-7800.Google Scholar
Greene-Kelly, R., 1953 Identification of montmorillonoids in clays J. Soil Sci. 4 233237 10.1111/j.1365-2389.1953.tb00657.x.CrossRefGoogle Scholar
Heimann, R. B., 1985 Stability and dissolution of Ca- and Na-bentonites Proceedings of the 19th Informational Meeting, Nuclear Fuel Waste Management Program, Atomic Energy of Canada Limited Technical Record TR–350 425436.Google Scholar
Heimann, R. B., (1988) Evaluating the durability of a simulated nuclear waste glass: A statistical approach: Atomic Energy of Canada Limited Report AECL-9058, App. C.Google Scholar
Heimann, R. B. and Stanchell, M. A. T., 1984 Reaction of Ca-saturated montmorillonite with groundwaters of different strengths at temperatures between 25° and 200°C Abstr. Geol. Soc. Am. 16 6 536.Google Scholar
Hudec, P. P., and Yanful, E. K., (1983) Properties of brine treated clays: Proceedings of the 4th International Symposium on Water-Rock Interaction, Misasa, Japan, p. 191.Google Scholar
Johnston, R. M., and Miller, H. G., (1984) The effect of pH on the stability of smectite: Atomic Energy of Canada Limited Report AECL-8366.Google Scholar
Johnston, R. M., and Miller, H. G., (1985) Hydrothermal stability of bentonite-based buffer materials: Atomic Energy of Canada Limited Report AECL-8376.Google Scholar
Kinter, E. B. and Diamond, S., 1956 A new method for preparation and treatment of oriented-aggregate specimens of soil clays for X-ray diffraction analysis J. Soil Sci. 81 111120 10.1097/00010694-195602000-00003.CrossRefGoogle Scholar
Lahann, R. W. and Roberson, H. E., 1980 Dissolution of silica from montmorillonite: Effect of solution chemistry Geochim. Cosmochim. Acta 44 19371943 10.1016/0016-7037(80)90193-3.CrossRefGoogle Scholar
Laszlo, P., 1987 Chemical reactions on clays Science 235 14731477 10.1126/science.235.4795.1473.CrossRefGoogle ScholarPubMed
Lindsay, W. L., 1979 Chemical Equilibria in Soils New York John Wiley and Sons Inc..Google Scholar
Lou, G. and Huang, P. M., 1988 Hydroxy-aluminosilicate interlayers in montmorillonite: Implications for acidic environments Nature 335 625627 10.1038/335625a0.CrossRefGoogle Scholar
McBride, M. B. and Bloom, P. R., 1977 Adsorption of aluminium by a smectite: II. An Al3+-Ca2+ exchange model Soil Sci. Soc. Amer. J. 41 1073 10.2136/sssaj1977.03615995004100060011x.CrossRefGoogle Scholar
Mermut, A. R., Ghebre-Egziabhier, K. and St. Arnaud, R. J., 1984 The nature of smectite in some fine textured lacustrine parent materials in southern Saskatchewan Can. J. Soil Sci. 64 481494 10.4141/cjss84-050.CrossRefGoogle Scholar
Mortland, M. M., 1968 Protonation of compounds at clay mineral surfaces Transactions of the 9th International Congress of Soil Science. 1 691699.Google Scholar
Oades, J. M., 1984 Interactions of polycations of aluminum and iron with clays Clays & Clay Minerals 32 4957 10.1346/CCMN.1984.0320107.CrossRefGoogle Scholar
Oscarson, D. W. and Heimann, R. B., 1988 The effect of an Fe(II)-silicate on selected properties of a montmorillonitic clay Clay Miner. 23 8190 10.1180/claymin.1988.023.1.08.CrossRefGoogle Scholar
Pinnavaia, T. J., 1983 Intercalated clay catalysts Science 220 365371 10.1126/science.220.4595.365.CrossRefGoogle ScholarPubMed
Quigley, R. M., (1984) Quantitative mineralogy and preliminary pore-water chemistry of candidate buffer and backfull materials for a nuclear fuel waste disposal vault: Atomic Energy of Canada Limited Report AECL-7827.Google Scholar
Reed, M. G., 1972 Stabilization of formation clays with hydroxy-aluminum solutions J. Petrol. Techn. 253 860864 10.2118/3694-PA.CrossRefGoogle Scholar
Rich, C. I., 1968 Hydroxy interlayers in expansible layer silicates Clays & Clay Minerals 16 1530 10.1346/CCMN.1968.0160104.CrossRefGoogle Scholar
Rong, Y., Jiang, Y., Li, Y., Shen, L., and Sun, G., (1985) Chinese patent CN 85 1 01256 A (April 5, 1985).Google Scholar
Singh, S. K. and Topp, S. V., 1982 Chemical, physical and engineering characterization of candidate backfull clays and clay admixtures for a nuclear waste repository. Part I Scientific Basis for Nuclear Waste Management Amsterdam Elsevier 413432.Google Scholar
Theng, B. K. G., 1974 Formation and Properties of Clay-Polymer-Complexes Amsterdam Elsevier.Google Scholar
Van der Marel, H. W. and Beutelspacher, H., 1976 Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures New York Elsevier Science Publishing Co..Google Scholar
Walker, W. J., Cronan, C. S. and Patterson, H. H., 1988 A kinetic study of aluminium adsorption by aluminosilicate clay minerals Geochim. Cosmochim. Acta 52 5562 10.1016/0016-7037(88)90056-7.CrossRefGoogle Scholar
Warren, C. J., Dudas, M. J. and Abboud, S. A., 1992 Effects of acidifcation on the chemical composition and layer charge of smectite from calcareous till Clays & Clay Minerals 40 731739 10.1346/CCMN.1992.0400612.CrossRefGoogle Scholar
Weismiller, R. A., Ahlrichs, J. L. and White, J. L., 1967 Infrared studies of hydroxy-aluminum interlayer material Soil Sci. Soc. Amer. Proc. 31 459 10.2136/sssaj1967.03615995003100040014x.CrossRefGoogle Scholar