Published online by Cambridge University Press: 01 January 2024
Many soils in southern Switzerland have a black color, contain a large amount of soil organic matter (SOM) and seem to have some andic properties although they did not develop on volcanic parent material. We investigated three typical ‘black’ soils to determine the mechanisms of (clay) mineral formation and transformation. We measured total element pools as well as the dithionite-, pyrophosphate-and oxalate-extractable fractions (Fe, Al, Si). The clay fraction (<2 µm) was analyzed using X-ray diffraction and FTIR spectroscopy. Iron speciation in the solid phase was determined by Mössbauer spectroscopy. With increasing weathering conditions, the plagioclase (albite) content decreases, trioctahedral species in the clay fraction such as biotite, chlorite or trioctahedral vermiculite either decompose or transform into a dioctahedral mineral such as dioctahedral vermiculite or hydroxy interlayered smectite (HIS). Typical weathering products were hydroxy interlayered vermiculite (HIV), HIS, interstratified minerals and kaolinite. The oxidation of Fe(II) into Fe(III) was evident and contributes to the transformation of trioctahedral mineral species into dioctahedral ones. In one soil, a large part of the Fe (up to 41%) was found in the form of Fe oxides. In the surface horizon, the poorly crystalline mineral ferrihydrite was dominant, while in the subsoil goethite prevailed. Maghemite (or maghemite/hematite mixture) was, furthermore, found in distinct concentrations down to a depth of ∼50 cm. The formation of this mineral requires high temperatures which means that a forest fire can influence soil mineralogy down to a considerable depth. The specific climatic conditions with periods of strong humidity alternating with periods of winter droughts, sporadic fire events and the relatively large content of poorly crystalline fractions of Fe and Al contributed to the stabilization of SOM.