Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T13:55:22.913Z Has data issue: false hasContentIssue false

Biogenic Nontronite from Marine White Smoker Chimneys

Published online by Cambridge University Press:  28 February 2024

Birgit Köhler
Affiliation:
Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Universität, 24118 Kiel, Germany
Arieh Singer
Affiliation:
Department of Soil and Water Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76-100, Israel
Peter Stoffers
Affiliation:
Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Universität, 24118 Kiel, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clay samples of greenish colour were collected from submarine hydrothermal chimneys of the Galapagos Rift and Mariana Trough. Mineralogical and chemical investigations of the clay by scanning and transmission electron microscopy, X-ray diffraction, differential thermal analysis, infrared-spectros-copy, X-ray fluorescence, and determination of specific surface area, and oxygen isotope composition identify it as a well crystallized nontronite. This nontronite of hydrothermal origin has a nearly monomineralic character, a low Al-content, and a formation temperature of 21.5 to 67.3°C. The most remarkable characteristic, however, of the nontronite deposit is its microstructure, a network of microtubes composed of fine frequently folded clay sheets. These delicate filaments show close similarity in size and form to sheath forming bacteria. The correlation between clay mineral and chemical characteristics, as well as biological conditions at marine hydrothermal smoker chimneys, let us suggest that Fe oxidizing, sheath forming bacteria are playing a decisive role in nontronite formation at these sites.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Alt, J. C., 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Mar. Geol. 81: 227239.CrossRefGoogle Scholar
Badaut, D., Besson, G., Decarreau, A. S., and Rautureau, R.. 1985 . Occurrence of a ferrous, trioctahedral smectite in recent sediments of Atlantis II Deep, Red Sea. Clay Miner. 20: 389404.CrossRefGoogle Scholar
Badaut, D., Blanc, G., and Decarreau, A.. 1990 . Variation des minéraux argileux ferrifères, en fonction du temps et de l'espace, dans les dépôts métallifères de la fosse Atlantis II en Mer Rouge. C.R. Acad. Sci. Paris 310: 10691075.Google Scholar
Badaut, D., Decarreau, A., and Besson, G.. 1992 . Ferripyrophyllite and related Fe3+ rich 2: 1 clays in recent deposits of Atlantis II Deep, Red Sea. Clay Miner. 27: 227244.CrossRefGoogle Scholar
Berthelin, J., 1988. Microbial weathering processes in natural environments. In Physical and Chemical Weathering in Geochemical Cycles. Lerman, A., and Meybeck, M., eds. NATO ASI Series C 251: 3359.CrossRefGoogle Scholar
Bischoff, J. L., 1972. A ferroan nontronite from the Red Sea geothermal system. Clays & Clay Miner. 20: 217223.CrossRefGoogle Scholar
Borthwick, J., and Harmon, R. S.. 1982 . A note regarding CIF3 as an alternative to BrF5 for oxygen isotope analysis. Geochim. Cosmochim. Acta 46: 16651668.CrossRefGoogle Scholar
Botz, R., and Stoffers, P.. 1992 . Isotopic composition of hydrothermal precipitates from the Mariana Trough. Mar. Geol. 108: 239245.CrossRefGoogle Scholar
Carter, D. L., Heilmann, M. D., and Gonzales, C. L.. 1965 . Ethylene glycol monoethyl ether for determining surface area of silicate minerals. Soil Science 100: 356360.CrossRefGoogle Scholar
Chamley, H., 1989. Clay Sedimentology. Berlin: Springer.CrossRefGoogle Scholar
Clayton, R. N., O'Neil, J. R., and Mayeda, T. K.. 1972 . Oxygen isotope exchange between quartz and water. J. Geophys. Res. 77: 30573067.CrossRefGoogle Scholar
Cole, T. G., 1983. Oxygen isotope geothermometry and origin of smectites in the Atlantis II Deep, Red Sea. Earth Planet. Sci. Lett. 66: 166176.CrossRefGoogle Scholar
Cole, T. G., 1985. Composition, oxygen isotope geochemistry, and origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific. Geochim. Cosmochim. Acta 49: 221235.CrossRefGoogle Scholar
Cole, T. G., and Shaw, H. F.. 1983 . The nature and origin of authigenic smectites in some recent marine sediments. Clay Miner. 18: 239252.CrossRefGoogle Scholar
Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., and Ballard, R. D.. 1979 . Submarine thermal springs on the Galapagos Rift. Science 203: 10731083.CrossRefGoogle ScholarPubMed
Cowen, J. P., Massoth, G. J., and Baker, E. T.. 1986 . Bacterial scavenging on Mn and Fe in a mid- to far-field hydrothermal particle plume. Nature 322: 169171.CrossRefGoogle Scholar
Decarreau, A., and Bonnin, D.. 1986 . Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: Experiments in partially reducing conditions. Clay Miner. 21: 181194.CrossRefGoogle Scholar
Decarreau, A., Bonnin, D., Badaut-Trauth, D., and Couty, R.. 1987 . Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Miner. 22: 207223.CrossRefGoogle Scholar
Edmond, J. M., Measures, C., Mangun, B., Grant, B., Sclater, F. R., Collier, R., Hudson, A., Gordon, L. I., and Corliss, J. B.. 1979 . On the formation of metal-rich deposits at ridge crests. Earth Planet. Sci. Lett. 46: 1930.CrossRefGoogle Scholar
Edmond, J. M., Von Damm, K. L., McDuff, R. E., and Measures, C. I.. 1982 . Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297: 187191.CrossRefGoogle Scholar
Ehrlich, H. L., 1981. Geomicrobiology. New York: Marcel Dekker.Google Scholar
Filip, Z., 1979. Wechselwirkungen von Mikroorganismen und Tonmineralen—eine Übersicht. Zeitschrift für Pflanzenernährung und Bodenkunde 142: 375386.CrossRefGoogle Scholar
Harder, H., 1976. Nontronite synthesis at low temperatures. Chem. Geol. 18: 169180.CrossRefGoogle Scholar
Harder, H., 1978. Synthesis of iron layer silicate minerals under natural conditions. Clays & Clay Miner. 26: 6572.CrossRefGoogle Scholar
Haymon, R. M., 1983. Growth history of hydrothermal black smoker chimneys. Nature 301: 695698.CrossRefGoogle Scholar
Haymon, R. M., Fornari, D. J., von Damm, K. L., Lilley, M. D., Perfit, M. R., Edmond, J. M., Shanks, W. C. III, Lutz, R. A., Grebmeier, J. M., Carbotte, S., Wright, D., McLaughlin, E., Smith, M., Beedle, N., and Olson, E.. 1993 . Volcanic eruption of the mid-ocean ridge along the East Pacific Rise at 9°45–52'N: Direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth Planet. Sci. Lett. 119: 85101.CrossRefGoogle Scholar
Haymon, R. M., and Kastner, M.. 1981 . Hot spring deposits on the East Pacific rise at 21°N: preliminary description of mineralogy and genesis. Earth Planet. Sci. Lett. 53: 363381.CrossRefGoogle Scholar
Haymon, R. M., and MacDonald, K. C.. 1985 . The geology of deep-sea hot springs. American Scientist 73: 441449.Google Scholar
Heath, G. R., and Dymond, J.. 1977 . Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Nazca plate. Geol. Soc. Am. Bull. 88: 723733.2.0.CO;2>CrossRefGoogle Scholar
Jannasch, H. W., and Mottl, M. J.. 1985 . Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717725.CrossRefGoogle ScholarPubMed
Juniper, S. K., and Fouquet, Y.. 1988 . Filamentous iron-silica deposits from modern and ancient hydrothermal sites. Can. Mineral. 26: 859869.Google Scholar
Karl, D. M., Brittain, A. M., and Tillbrook, B. D.. 1989 . Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot spot volcano. Deep-Sea Res. 36: 16551673.CrossRefGoogle Scholar
Karl, D. M., McMurtry, G. M., Malahoff, A., and Garcia, M. O.. 1988 . Loihi Seamount, Hawaii: A mid-plate volcano with a distinctive hydrothermal system. Nature 335: 532535.CrossRefGoogle Scholar
Knauth, L. P., and Epstein, S.. 1976 . Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim. Acta 40: 10951108.CrossRefGoogle Scholar
Köhler, B., 1991. Eigenschaften und Genese von marinen, authigenen Smektiten aus aktiven Hydrohthermalgebieten. Berichte-Reports, Geol.-Paläont. Inst. Univ. Kiel 47: 111 pp.Google Scholar
Köhler, B., and Singer, A.. 1992 . A marine hydrothermal nontronite modification at smoker chimneys. A bacteria-influenced formation?. Zbl Geol. Paläont. Teil I 5: 407414.Google Scholar
MacDonald, K. C., Becker, K., Spiess, F. N., and Ballard, R. D.. 1980 . Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise. Earth Planet. Sci. Lett. 48: 17.CrossRefGoogle Scholar
Marshall, K. C., 1968. Interaction between colloidal montmorillonite and cells of rhizobium species with different ionogenic surfaces. Biochim. Biophys. Acta 156: 179186.CrossRefGoogle Scholar
Marshall, K. C., 1969. Studies by microelectrophoretic and microscopic techniques of the sorption of illite and montmorillonite to rhizobia. J. Gen. Microbiol. 56: 301306.CrossRefGoogle Scholar
Marshall, K. C., 1971. Sorptive interactions between soil particles and microorganisms. In Soil Biochemistry 2. McLaren, A. D., and Skujins, J., eds. New York: Marcel Dekker, 409445.Google Scholar
McMurtry, G. M., Wang, C.-H., and Yeh, H.-W.. 1983 . Chemical and isotopic investigations into the origin of clay minerals from the Galapagos hydrothermal mounds field. Geochim. Cosmochim. Acta 47: 475489.CrossRefGoogle Scholar
Mehra, O. P., and Jackson, M. L.. 1960 . Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays & Clay Miner. 7: 317327.CrossRefGoogle Scholar
Moorby, S. A., and Cronan, D. S.. 1983 . The geochemistry of hydrothermal and pelagic sediments from the Galapagos hydrothermal mounds field, D.S.D.P. Leg 70. Mineral Mag. 47: 291300.CrossRefGoogle Scholar
Rona, P. A., 1984. Hydrothermal mineralization at seafloor spreading centers. Earth-Science Reviews 20: 1104.CrossRefGoogle Scholar
Singer, A., and Stoffers, P.. 1987 . Mineralogy of a hydrothermal sequence in a core from the Atlantis II Deep, Red Sea. Clay Miner. 22: 251267.CrossRefGoogle Scholar
Singer, A., Stoffers, P., Heller-Kallai, L., and Szafranek, D.. 1984 . Nontronite in a deep-sea core from the South Pacific. Clays & Clay Miner. 32: 375383.CrossRefGoogle Scholar
Spiess, F. N., MacDonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Franchetau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, C., MacDougall, J. D., Miller, S., Mormark, W., Orcutt, J., and Rangin, C., (RISE Project group). 1980. East Pacific Rise: Hot springs and geophysical experiments. Science 207: 14211433.CrossRefGoogle ScholarPubMed
Stackelberg, U. von, Marchig, V., Müller, P., and Weiser, T.. 1990 . Hydrothermal mineralization in the Lau and North Fiji Basins. Geol. Jb. D 92: 547614.Google Scholar
Stoffers, P., Botz, R., Cheminée, J. L., Devey, C. W., Frogler, V., Glasby, G. P., Hartmann, M., Hekinian, R., Kögler, F., Laschek, D., Larqué, P., Michaelis, W., Mühe, R. K., Puteanus, D. M., and Richnow, H. H.. 1989 . Geology of Macdonald Seamount Region, Austral Islands: Recent hotspot volcanism in the South Pacific. Mar. Geophys. Res. 11: 101112.CrossRefGoogle Scholar
Stoffers, P., Singer, A., McMurtry, G. M., Arquit, A., and Yeh, H.-W.. 1990 . Geochemistry of a hydrothermal nontronite deposit from the Lau basin, Southwest Pacific. Geol. Jb. D 92: 615628.Google Scholar
Stotzky, G., 1966a. Influence of clay minerals on microorganisms: II. Effect of various clay species, homoionic clays, and other particles on bacteria. Can. J. Microbiol. 12: 831848.CrossRefGoogle Scholar
Stotzky, G., 1966b. Influence of clay minerals on microorganisms. III. Effect of particle size, cation exchange capacity, and surface area on bacteria. Can. J. Microbiol. 12: 12351246.CrossRefGoogle Scholar
Stotzky, G., and Rem, L. T.. 1966 . Influence of clay minerals on microorganisms. I. Montmorillonite and kaolinite on bacteria. Can. J. Microbiol. 12: 547563.CrossRefGoogle ScholarPubMed
Stumm, W., and Morgan, J. J.. 1981 . Aquatic Chemistry. New York: Wiley.Google Scholar
Tunnicliffe, V., Botros, M., de Burgh, M. E., Dinet, A., Johnson, H. P., Juniper, S. K., and McDuff, R. E.. 1986 . Hydrothermal vents of Explorer Ridge, northeast Pacific. Deep-Sea Res. 33: 401412.CrossRefGoogle Scholar
Tunnicliffe, V., and Fontaine, A. R.. 1987 . Faunal composition and organic surface encrustations at hydrothermal vents on the southern Juan de Fuca Ridge. J. Geophys. Res. 33: 303311.Google Scholar
Tunnicliffe, V., and Juniper, S. K.. 1990 . Dynamic character of the hydrothermal vent habitat and the nature of sulphide chimney fauna. Progress in Oceanography 24: 113.CrossRefGoogle Scholar
Von Damm, K. L., 1990. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Annu. Rev. Earth Planet. Sci. 18: 173204.CrossRefGoogle Scholar
Weiss, R. F., Lonsdale, P., Lupton, J. E., Bainbridge, A. E., and Craig, H.. 1977 . Hydrothermal plumes in the Galapagos Rift. Nature 267: 600603.CrossRefGoogle Scholar
Yeh, H. W., and Savin, S. M.. 1977 . Mechanism of burial metamorphism of argillaceous sediments: 3. O-isotope evidence. Geol. Soc. Am. Bull. 88: 13211330.2.0.CO;2>CrossRefGoogle Scholar
Zierenberg, R. A., and Schiffmann, P.. 1990 . Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge. Nature 348: 155157.CrossRefGoogle Scholar