Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T06:06:27.308Z Has data issue: false hasContentIssue false

Atomic Force Microscopy Method for Measuring Smectite Coefficients of Friction

Published online by Cambridge University Press:  01 January 2024

Laura M. Kosoglu
Affiliation:
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
Barry R. Bickmore*
Affiliation:
Department of Geological Sciences, Brigham Young University, Provo, UT 84602, USA
George M. Filz
Affiliation:
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
Andrew S. Madden
Affiliation:
School of Geology and Geophysics, University of Oklahoma, Norman, OK 73019, USA
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The coefficient of friction of clay minerals at the micro-scale has generally not been studied due to difficulties in obtaining measurements in a bulk-soil volume undergoing shear at such small scales. Information on friction at the micro-scale may provide insight into grain-scale processes that operate in bulk samples or in natural faults. The objective of this study was to develop a method to measure the microscale friction coefficient of smectites. The experiments described show that the axial atomic force microscopy method can be adapted to easily obtain accurate coefficient of friction (μ) measurements for smectites from force curves involving colloidal probes. The method allows for the measurements to be performed over spatial scales of a few μm, can be carried out under dry conditions or a wide range of aqueous solutions, and requires no calibration beyond making a few microscopic measurements of the probe. This method provides measurements of micro-scale normal and shear forces between minerals, which can be used for a variety of applications such as the study of shear deformation, consolidation, and fault dynamics. Control tests of silica on mica (μ = 0.29±0.02) agree with literature values where limits indicate one standard deviation. Coefficient of friction values for wet and dry Na-montmorillonite were determined to be 0.20±0.03 and 0.72±0.03, respectively.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

References

Attard, P., Carambassis, A., and Rutland, M.W., 1999 Dynamic surface force measurement. 2. Friction and the atomic force microscope Langmuir 15 553563 10.1021/la980848p.CrossRefGoogle Scholar
Attard, P., Stiernstedt, J., and Rutland, M.W., 2007 Measurement of friction coefficients with the atomic force microscope Journal of Physics: Conference Series 61 5155.Google Scholar
Bhushan, B., 2005 Nanotribology and nanomechanics Wear 259 15071531 10.1016/j.wear.2005.01.010.CrossRefGoogle Scholar
Bhushan, B., Israelachvili, J.N., and Landman, U., 1995 Nanotribology-friction, wear and lubrication at the atomic-scale Nature 374 607616 10.1038/374607a0.CrossRefGoogle Scholar
Bickmore, B.R., Hochella, M.F., Bosbach, D., and Charlet, L., 1999 Methods for performing atomic force microscopy imaging of clay minerals in aqueous solutions Clays and Clay Minerals 47 573581 10.1346/CCMN.1999.0470504.CrossRefGoogle Scholar
Bickmore, B.R., Bosbach, D., Hochella, M.F. Jr. Charlet, L., and Rufe, E., 2001 In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms American Mineralogist 86 411423 10.2138/am-2001-0404.CrossRefGoogle Scholar
Bickmore, B.R., Nagy, K.L., Sandlin, P.E., and Crater, T.S., 2002 Quantifying surface areas of clays by atomic force microscopy American Mineralogist 87 780783 10.2138/am-2002-5-622.CrossRefGoogle Scholar
Bish, D.L., and Giese, R.F. Jr., 1981 Interlayer bonding in IIb chlorite American Mineralogist 66 12161220.Google Scholar
Blum, A.E., Nagy, K.L., and Blum, A.E., 1994 Determination of illite/smectite particle morphology using scanning force microscopy Scanning Probe Microscopy of Clay Minerals Colorado, USA Workshop Lecture Series, 7, The Clay Minerals Society, Boulder 171202.Google Scholar
Bosbach, D., Charlet, L., Bickmore, B.R., and Hochella, M.F. Jr., 2000 The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy American Mineralogist 85 12091216 10.2138/am-2000-8-914.CrossRefGoogle Scholar
Bunds, M.P., 2001 Fault strength and transpressional tectonics along the castle mountain strike-slip fault, southern Alaska Geological Society of America Bulletin 113 908919 10.1130/0016-7606(2001)113<0908:FSATTA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Carpenter, B.M., Marone, C., and Saffer, D.M., 2009 Frictional behavior of materials in the 3D SAFOD volume Geophysical Research Letters 36 L05302 10.1029/2008GL036660.CrossRefGoogle Scholar
Collettini, C., Viti, C., Smith, S.A.F., and Holdsworth, R.E., 2009 Development of interconnected talc networks and weakening of continental low-angle normal faults Geology 85 567570 10.1130/G25645A.1.CrossRefGoogle Scholar
Dieterich, J.H., and Kilgore, B.D., 1994 Direct observation of frictional contacts; new insights for state-dependent properties Pure and Applied Geophysics 143 283302 10.1007/BF00874332.CrossRefGoogle Scholar
Gao, J.P., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., and Landman, U., 2004 Frictional forces and Amontons’ law: From the molecular to the macroscopic scale Journal of Physical Chemistry B 108 34103425 10.1021/jp036362l.CrossRefGoogle Scholar
Giese, R.F. Jr., 1978 The electrostatic interlayer forces of layer structure minerals Clays and Clay Minerals 26 5157 10.1346/CCMN.1978.0260106.CrossRefGoogle Scholar
Giese, R.F. Jr., 1980 Hydroxyl orientations and interlayer bonding in amesite Clays and Clay Minerals 28 8186 10.1346/CCMN.1980.0280201.CrossRefGoogle Scholar
Gnecco, E., Bennewitz, R., Pfeiffer, O., Socoliuc, A., Meyer, E., and Bhushan, B., 2005 Friction and wear at the nanoscale Nanotribology and Nanomechanics Berlin Springer 484532.Google Scholar
Holdsworth, R.E., 2004 Weak faults-rotten cores Science 303 181182 10.1126/science.1092491.CrossRefGoogle ScholarPubMed
Jones, R., Pollock, H.M., Geldart, D., and Verlinden-Luts, A., 2004 Frictional forces between cohesive powder particles studied by AFM Ultramicroscopy 100 5978 10.1016/j.ultramic.2004.01.009.CrossRefGoogle ScholarPubMed
Kock, I., and Huhn, K., 2007 Influence of particle shape on the frictional strength of sediments-a numerical case study Sedimentary Geology 196 217233 10.1016/j.sedgeo.2006.07.011.CrossRefGoogle Scholar
Kopf, A., and Brown, K.M., 2003 Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts Marine Geology 202 193210 10.1016/S0025-3227(03)00286-X.CrossRefGoogle Scholar
Kuhn, M.R., and Mitchell, J.K., 1993 New perspectives on soil creep Journal of Geotechnical Engineering 119 507524 10.1061/(ASCE)0733-9410(1993)119:3(507).CrossRefGoogle Scholar
Lambe, T.W., and Whitman, R.V., 1969 Soil Mechanics New York John Wiley & Sons, Inc..Google Scholar
Mitchell, J.K., and Soga, K., 2005 Fundamentals of Soil Behavior New Jersey, USA John Wiley & Sons, Inc..Google Scholar
Moore, D.E., and Lockner, D.A., 2004 Crystallographic controls on the frictional behavior of dry and water- saturated sheet structure minerals Journal of Geophysical Research 109 116.CrossRefGoogle Scholar
Moore, D.E., Lockner, D.A., Dixon, T.H., and Moore, C., 2007 Friction of the smectite clay montmorillonite: A review and interpretation of data The Seismogenic Zone of Subduction Thrust Faults New York MARGINS Theoretical and Experimental Earth Science Series, Vol. 2, Columbia University Press 317345.CrossRefGoogle Scholar
Moore, D.E., and Rymer, M.J., 2007 Talc-bearing serpentinite and the creeping section of the San Andreas fault Nature 448 795797 10.1038/nature06064.CrossRefGoogle ScholarPubMed
Morrow, C.A., Shi, L.Q., and Byerlee, J.D., 1982 Strain hardening and strength of clay-rich fault gouges Journal of Geophysical Research 87 67716780 10.1029/JB087iB08p06771.CrossRefGoogle Scholar
Nishimura, S., Kodama, M., Yao, K., Imai, Y., and Tateyama, H., 2002 Direct surface force measurement for synthetic smectites using the atomic force microscope Langmuir 18 46814688 10.1021/la0200414.CrossRefGoogle Scholar
Piner, R.D., Xu, T.T., Fisher, F.T., Qiao, Y., and Ruoff, R.S., 2003 Atomic force microscopy study of clay nanoplatelets and their impurities Langmuir 19 79958001 10.1021/la0347814.CrossRefGoogle Scholar
Price, D.G., and de Freitas, M.H., 2009 Geological masses Engineering Geology: Principles and Practice Berlin Springer 6390.Google Scholar
Ruan, J.A., and Bhushan, B., 1994 Atomic-scale friction measurements using friction force microscopy. 1. General principles and new measurement techniques Journal of Tribology 116 378388 10.1115/1.2927240.CrossRefGoogle Scholar
Schleicher, A.M., Warr, L.N., and van der Pluijm, B.A., 2009 On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5-3 km vertical depth (SAFOD drillhole at Parkfield, California) Contributions to Mineralogy and Petrology 157 173187 10.1007/s00410-008-0328-7.CrossRefGoogle Scholar
Schleicher, AM v d, Pluijm, B.A., and Warr, L.N., 2010 Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California Geology 38 667670 10.1130/G31091.1.CrossRefGoogle Scholar
Scholz, C.H., 1998 Earthquakes and friction laws Nature 391 3741 10.1038/34097.CrossRefGoogle Scholar
Selvam, A., See, C.H., Barkdoll, B., Prasad, S., and O’Haver, J., 2006 Use of atomic force microscopy for examining wet clay Clays and Clay Minerals 54 2528 10.1346/CCMN.2006.0540103.CrossRefGoogle Scholar
Solum, J.G., Hickman, S.H., Lockner, D.A., Moore, D.E., van der Pluijm, B.A., Schleicher, A.M., and Evans, J.P., 2006 Mineralogical characterization of protolith and fault rocks from the SAFOD Main Hole Geophysical Research Letters 33 L21314 10.1029/2006GL027285.CrossRefGoogle Scholar
Solum, J.G., and van der Pluijm, B.A., 2009 Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behavior Tectonophysics 475 554562 10.1016/j.tecto.2009.07.006.CrossRefGoogle Scholar
Stiernstedt, J., Rutland, M.W., and Attard, P., 2005 A novel technique for the in situ calibration and measurement of friction with the atomic force microscope Review of Scientific Instruments 76 083710 10.1063/1.2006407.CrossRefGoogle Scholar
Svedberg, T., and Nichols, J.B., 1923 Determination of size and distribution of size of particle by centrifugal methods Journal of the American Chemical Society 45 29102917 10.1021/ja01665a016.CrossRefGoogle Scholar
Tembe, S., Lockner, D.A., Solum, J.G., Morrow, C.A., Wong, T.-F., and Moore, D.E., 2006 Frictional strength of cuttings and core from SAFOD drillhole phases 1 and 2 Geophysical Research Letters 33 L23307 10.1029/2006GL027626.CrossRefGoogle Scholar
Wenk, H.R., Kanitpanyacharoen, W., and Voltolini, M., 2010 Preferred orientation of phyllosilicates: Comparison of fault gouge, shale, schist Journal of Structural Geology 32 478489 10.1016/j.jsg.2010.02.003.CrossRefGoogle Scholar
Wintsch, R.P., Christoffersen, R., and Kronenberg, A.K., 1995 Fluid-rock weakening of fault zones Journal of Geophysical Research 100 1302113032 10.1029/94JB02622.CrossRefGoogle Scholar
Wu, F.T., Blatter, L., and Roberson, H., 1975 Clay gouges in the San Andreas Fault System and their possible implications Pure and Applied Geophysics 113 8795 10.1007/BF01592901.CrossRefGoogle Scholar
Zoback, M.D., 2000 Strength of the San Andreas Nature 405 3132 10.1038/35011181.CrossRefGoogle ScholarPubMed
Zoback, M.D., Hickman, S., and Ellsworth, W., 2010 Scientific drilling into the San Andreas fault zone EOS 91 197199 10.1029/2010EO220001.CrossRefGoogle Scholar