Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T19:32:11.665Z Has data issue: false hasContentIssue false

Approach to a Descriptive Model of Charge Reduction in Vermiculite by Hydrothermal Treatment

Published online by Cambridge University Press:  01 January 2024

Ana M. Campos*
Affiliation:
Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, AK 30 No. 45-03, Bogotá, Colombia
Sonia Moreno
Affiliation:
Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, AK 30 No. 45-03, Bogotá, Colombia
Rafael Molina*
Affiliation:
Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, AK 30 No. 45-03, Bogotá, Colombia
*
Present address: Departamento de Ciencias Básicas, Universidad Jorge Tadeo Lozano, Bogotá, Colombia
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Vermiculites have the potential to serve as effective catalysts if pillared with Al, but their high charge presents an obstacle to the pillaring process. The purpose of this study was to submit natural vermiculite to thermal treatments in the presence of water vapor in order to effect a reduction in the global negative charge and thereby to enhance its susceptibility to pillaring. The process of charge reduction in vermiculite under the conditions selected involved the extraction of 25% of IVAl accompanied by the extraction of structural Mg and charge-compensating cations (Ca2+, Na+, and K+). The results indicate a reduction of 35% in the global negative charge in vermiculite by the end of the treatment. Some of the VIAl content was not removed during acid washing, and probably remained in the solid in structural positions in the octahedral sheet.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

References

Barr, T. Seal, S. Wozniak, K. and Klimowski, J., 1997 ESCA studies of the coordination state of aluminum in oxide environments Journal of Chemical Society Faraday Transactions 93 181186 10.1039/a604061f.CrossRefGoogle Scholar
Campos, A., 2007 Estudio del efecto de disminución de carga interlaminar de una vermiculita y su aplicación como catalizadores ácidos tipo arcilla pilarizada PhD thesis Colombia Universidad Nacional de Colombia.Google Scholar
Campos, A. Moreno, S. and Molina, R., 2005 Acidez e hidroisomerización de heptano en una vermiculita colombiana modificada con aluminio Revista Colombiana de Química 34 7992.Google Scholar
Campos, A. Moreno, S. and Molina, R., 2008 Relationship between hydrothermal treatment parameters as a strategy to reduce layer charge in vermiculite, and its catalytic behavior Catalysis Today 133-135 351356 10.1016/j.cattod.2007.12.110.CrossRefGoogle Scholar
Chapman, H., Black, C. Evans, D. White, J. Ensminger, L. and Clark, E., 1965 Cation exchange capacity Methods of Soil Analysis 891901.CrossRefGoogle Scholar
Chmielarz, L. Kus′trowski, P. Michalik, M. Dudek, B. Piwowarska, Z. and Dziembaj, R., 2008 Vermiculites intercalated with Al2O3 pillars and modified with transition metals as catalysts of DeNOx process Catalysis Today 137 242246 10.1016/j.cattod.2007.09.009.CrossRefGoogle Scholar
Chorom, M. and Rengasamy, P., 1996 Effects of heating on swelling and dispersion of different cationic forms of a smectite Clays and Clay Minerals 44 783790 10.1346/CCMN.1996.0440609.CrossRefGoogle Scholar
Cristiano, D. Campos, A. and Molina, R., 2005 Charge reduction in a vermiculite byacid and hydrothermal methods: A comparative study Journal of Physical Chemistry B 109 1902619033 10.1021/jp044437v.CrossRefGoogle Scholar
d′Espinose de la Calleire, B. and Fripiat, J., 1991 Dealumination and aluminium intercalation of vermiculite Clays and Clay Minerals 39 270280 10.1346/CCMN.1991.0390307.CrossRefGoogle Scholar
del Rey-Perez-Caballero, F. and Poncelet, G., 2000 Microporous 18 Å Al-pillared vermiculites: preparation and characterization Microporous and Mesoporous Materials 37 313327 10.1016/S1387-1811(99)00274-7.CrossRefGoogle Scholar
Giudici, R. Kouwenhoven, H. and Prins, R., 2000 Comparison of nitric and oxalic acid in the dealumination of mordenite Applied Catalysis A 203 101110 10.1016/S0926-860X(00)00470-1.CrossRefGoogle Scholar
González, A. Espinòs, J. Munuera, G. Sanz, J. and Serratosa, J., 1988 Bonding-state characterization of constituent elements in phyllosilicate minerals by XPS and NMR Journal of Physical Chemistry 92 34713476 10.1021/j100323a031.CrossRefGoogle Scholar
Hernández, W. Centeno, M. Odriozola, J. Moreno, S. and Molina, R., 2008a Aciditychar acterization of a titanium and sulfate modified vermiculite Materials Research Bulletin 43 16301640 10.1016/j.materresbull.2007.10.018.CrossRefGoogle Scholar
Hernández, W. Moreno, S. and Molina, R., 2008b Modificación y caracterización de una vermiculita colombiana con especies de titanio, zirconio y sulfato Revista Colombiana de Química 36 7391.Google Scholar
Jiménez de Haro, M. Pérez-Rodríguez, J. Poyato, J. Pérez-Maqueda, L. Ramírez, V. Justo, A. Lerf, A. and Wagner, F., 2005 Effect of ultrasound on preparation of porous materials from vermiculite Applied Clay Science 30 1120 10.1016/j.clay.2005.02.004.CrossRefGoogle Scholar
Kitajima, K. Taruta, S. and Takusagawa, N., 1991 Effects of layer charge on the IR spectra of synthetic fluorine micas Clay Minerals 26 435440 10.1180/claymin.1991.026.3.13.CrossRefGoogle Scholar
Klinowski, J., 1999 Solid-state NMR studies of molecular sieve catalysts Chemical Review 91 14591479 10.1021/cr00007a010.CrossRefGoogle Scholar
Komadel, P. Madejová, J. and Bujdák, J., 2005 Preparation and properties of reduced-charge smectite - A review Clays and Clay Minerals 53 313334 10.1346/CCMN.2005.0530401.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Janek, M. and Komadel, P., 1998 Comparative FT-IR studyo f structural modifications during acid treatment of dioctahedral smectites and hectorite Spectrochimica Acta A 54 13971406 10.1016/S1386-1425(98)00040-7.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Petit, S. and Komadel, P., 2000 Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region Clay Minerals 35 739751 10.1180/000985500547160.CrossRefGoogle Scholar
Maqueda, C. Santas Romero, A. Morillo, E. Pérez-Rodríguez, J.L. Lerf, A. and Ernst Wagner, F., 2008 The behaviour of Fe in ground and acid-treated vermiculite from Santa Olalla (Spain) Clays and Clay Minerals 56 380388 10.1346/CCMN.2008.0560307.CrossRefGoogle Scholar
Marques, J. Gener, I. Ayrault, P. Bordado, J. Lopes, J. Ramôa, R. and Guisnet, M., 2005 Dealumination of HBEA zeolite bys teaming and acid leaching: distribution of the various aluminic species and identification of the hydroxyl groups Comptes Rendus Chimie 8 399410 10.1016/j.crci.2005.01.002.CrossRefGoogle Scholar
Michot, L. Tracas, D. Lartiges, B. Lhote, F. and Pons, C., 1994 Partial pillaring of vermiculite byaluminium polycations Clay Minerals 29 133136 10.1180/claymin.1994.029.1.15.CrossRefGoogle Scholar
Moreno, S. Sun Kou, R. and Poncelet, G., 1996 Hydroconversion of Heptane over Pt/Al-pillared montmorillonites and saponites. A comparative study Journal of Catalysis 162 198208 10.1006/jcat.1996.0277.CrossRefGoogle Scholar
Moreno, S. Sun Kou, R. and Poncelet, G., 1997 Influence of preparation variables on the structural, textural, and catalytic properties of Al-pillared smectites Journal of Physical Chemistry B 101 15691578 10.1021/jp961564l.CrossRefGoogle Scholar
Newman, A. Brown, G., Moore, D.M. and Reynolds, R.J., 1987 The chemical constitution of clays X-ray diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 1128.Google Scholar
Sing, K. Everett, R. Haul, R. Moscou, L. Pierotti, R. Rouquerol, J. and Siemienwska, T., 1985 Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure and Applied Chemistry 57 603619 10.1351/pac198557040603.CrossRefGoogle Scholar
Triantafillidis, C. Vlessidis, A. and Evmiridis, N., 2000 Dealuminated H-Y zeolites: Influence of the degree and the type of dealumination method on the structural and acidic characteristic of H-Y zeolites Industrial and Engineering Chemistry Research 39 307319 10.1021/ie990568k.CrossRefGoogle Scholar
Tunega, D. and Lischka, H., 2003 Effect of the Si/Al ordering on structural parameters and the energetic stabilization of vermiculites — a theoretical study Physics and Chemistry of Minerals 30 517522 10.1007/s00269-003-0347-x.CrossRefGoogle Scholar
Wachs, I., 2005 Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials Catalysis Today 100 7994 10.1016/j.cattod.2004.12.019.CrossRefGoogle Scholar
Wagner, C., 1990 Practical Surface Analysis 2 New York J. Wileyand Sons.Google Scholar
Wiewióra, A. Perez-Rodriguez, L. Perez-Maqueda, L. and Drapala, J., 2003 Particle size distribution in sonicated high- and low-charge vermiculites Applied Clay Science 24 5158 10.1016/S0169-1317(03)00133-9.CrossRefGoogle Scholar