Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T23:13:57.111Z Has data issue: false hasContentIssue false

Anomalous Reverse Zoning of Saponite and Corrensite Caused by Contact Metamorphism and Hydrothermal Alteration of Marly Rocks Associated with Subvolcanic Bodies

Published online by Cambridge University Press:  01 January 2024

Isabel Abad
Affiliation:
Departamento de Geología, Universidad de Jaén, Campus Universitario, 23071 Jaén, Spain
Juan Jiménez-Millán*
Affiliation:
Departamento de Geología, Universidad de Jaén, Campus Universitario, 23071 Jaén, Spain
José Miguel Molina
Affiliation:
Departamento de Geología, Universidad de Jaén, Campus Universitario, 23071 Jaén, Spain
Fernando Nieto
Affiliation:
Departamento de Mineralogía y Petrología and IACT, Facultad de Ciencias, Universidad de Granada-CSIC, 18002 Granada, Spain
Juan Antonio Vera
Affiliation:
Departamento de Estratigrafía y Paleontología, Universidad de Granada, Facultad de Ciencias, 18071 Granada, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of a subvolcanic intrusion on its host rocks in the Priego de Córdoba area (SE Spain) was studied by optical microscopy, X-ray diffraction and electron microscopy. The intrusion of a laccolith of stratiform dolerite in partially consolidated marly sediments at quite shallow depths below the ocean floor took place during the intracontinental rifting phase of the Subbetic zone of the Betic Cordilleras. In the first stage, contact metamorphism caused the crystallization of calc-silicate consisting of grossular andradite garnet, diopside, vesuvianite and titanite for which the upper temperature limit was 500°C. Phyllosilicates are found in a network of veins cross-cutting the carbonate and calc-silicate matrix, indicating their formation during a process of hydrothermal alteration superimposed on the contact aureole. In the area closest to the subvolcanic rocks, saponite is the main phyllosilicate although some dispersed chlorite is found. In the zone furthest from the contact, corrensite together with saponite and beidellitic smectites were observed. The presence of low-temperature phases (saponite) in the area closest to the laccolith reveals the evolution of the hydrothermal system toward cooler conditions. In the early stage, the circulation of a hot hydrothermal fluid caused the crystallization of chlorite in the area surrounding the subvolcanic body and corrensite in the more distal area, which might have begun even during the contact metamorphism stage. A cooling phase followed, resulting in the crystallization of saponite in the host rocks, and the crystallization of dioctahedral and trioctahedral smectites inside the subvolcanic body.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

References

Adamson, A.C. Richards, H.G., Detrick, R. Honnorez, J. Bryan, W.B. and Juteau, R., (1990) Low temperature alteration of very young basalts from ODP Hole 648B: Serocki volcano Mid-Atlantic ridge Proceedings of Ocean Drilling Program,^Scientific Results Washington, D.C. US Government Printing Officce 106 109.Google Scholar
Armstrong, J.T., (1989) CITZAF: Combined ZAF and Phi-rho (Z) Electron beam correction Programs Pasadena, California California Institute of Technology.Google Scholar
Bettison-Varga, L. and Mackinnon, I.D.R., (1997) The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite Clays and Clay Minerals 45 506516 10.1346/CCMN.1997.0450403.Google Scholar
Bird, D.K. Schiffman, P. Elders, W.A. Williams, A.E. and McDowell, D.S., (1984) Calc-silicate mineralisation in active geothermal systems Economic Geology 79 671695 10.2113/gsecongeo.79.4.671.Google Scholar
Bühmann, C., (1992) Smectite-to-illite conversion in a geothermally and lithologically complex Permian sedimentary sequence Clays and Clay Minerals 40 5364 10.1346/CCMN.1992.0400107.Google Scholar
Busnardo, R. and Chenevoy, M., (1962) Dolérites intrusives dans le Lias et le Dogger d’Andalousie; leurs différenciations pegmatitiques alcalines et auréoles de métamorphisme Bulletin de la Societe Geologique de France 7eserieT–IV 461 470.Google Scholar
Clayton, T. and Pearce, R.B., (2000) Alteration mineralogy of Cretaceous basalt from ODP Site 1001, Leg 165 (Caribbean Sea) Clay Minerals 35 719733 10.1180/000985500547043.Google Scholar
Decarreau, A. Grauby, O. and Petit, S., (1992) The actual distribution of octahedral cations in 2:1 clay minerals: Results from clay synthesis Applied Clay Science 7 147167 10.1016/0169-1317(92)90036-M.Google Scholar
Drief, A. and Nieto, F., (2000) Chemical composition of smectites formed by clastic sediments. Implications of the smectite-illite transformation Clay Minerals 35 665678 10.1180/000985500547124.Google Scholar
Drief, A. Nieto, F. and Sánchez-Navas, A., (2001) Experimental clay-mineral formation from a subvolcanic rock by interaction with 1 M NaOH solution at room temperature Clays and Clay Minerals 49 92106 10.1346/CCMN.2001.0490108.Google Scholar
Dudoignon, P. Proust, D. and Gachon, A., (1997) Hydrothermal alteration associated with rift zones at Fangataufa Atoll (French-Polynes ia) Bulletin of Volcanology 58 583596 10.1007/s004450050164.Google Scholar
Einsele, G., (1986) Interaction between sediments and basalt injections in young Gulf of California-type Spreading Centers Geologische Rundschau 75 197208 10.1007/BF01770188.Google Scholar
Fulignati, P. Malfitano, G. and Sbrana, A., (1997) The Pantelleria-Caldera geothermal system — Data from the hydrothermal minerals Journal of Volcanology and Geothermal Research 75 251270 10.1016/S0377-0273(96)00066-2.Google Scholar
Grauby, O. Petit, S. Decarreau, A. and Baronnet, A., (1993) The beidellite-saponite series: An experimental approach European Journal of Mineralogy 5 623635 10.1127/ejm/5/4/0623.Google Scholar
Honnorez, J. and Emiliani, E., (1981) The aging of the oceanic crust at low temperature The Sea New York Wiley 525 587.Google Scholar
Huertas, F.J. Cuadros, J. Huertas, F. and Linares, J., (2000) Experimental study of the hydrothermal formation of smectite in the beidellite-saponite series American Journal of Science 300 504527 10.2475/ajs.300.6.504.Google Scholar
Hunter, A.G. Kempton, P.D. and Greenwood, P., (1999) Low-temperature fluid-rock interaction — an isotopic and mineralogical perspective of upper crustal evolution, eastern flank of the Juan-de-Fuca ridge (Jdfr), ODP Leg-168 Chemical Geology 155 328 10.1016/S0009-2541(98)00138-7.Google Scholar
Jiménez Millán, J. and Velilla, N., (1994) Mineralogy and geochemistry of reduced manganese carbonate-silicate-rocks from the Aracena area (Iberian Massif, SW Spain) Neues Jahrbuch fur Mineralogie Abhandlungen 166 193 209.Google Scholar
Kelts, K., (1982) Petrology of hydrothermally metamorphosed sediments at Deep-Sea Drilling Site-477, Southern Guaymas basin rift, Gulf of California Initial Reports ofthe Deep Sea Drilling Project 64 1123 1136.Google Scholar
Laverne, C., (1987) Les altérations des basaltes en domaine oceanique: mineralogie pétrologie et géochimie d’un système hydrothermal: le puits 504B, Pacifique oriental France Université Aix-Marseille III PhD thesis.Google Scholar
Merriman, R.J. Bevins, R.E. and Ball, T.A., (1986) Petrological and geochemical variations within the Tal and Fan intrusion: a study of element mobility during low-grade metamorphism with implications for petrogenetic modelling Journal of Petrology 27 14091436 10.1093/petrology/27.6.1409.Google Scholar
Molina, J.M. and Vera, J.A., (1999) Sedimentación marina somera sobre edificios volcanicos submarinos (Jurásico medio-superior, Subbetico Medio, Cordilleras Béticas) Libro Homenaje a Jose Ramírez del Pozo Madrid A.G.G.E.P. 91 106.Google Scholar
Molina, J.M. and Vera, J.A., (2000) Influencia del subvolcanismo en la sedimentación pelagica del Jurásico medio (Sierra de San Pedro, provincia de Jaén, Subbético medio) Geogaceta 27 111 114.Google Scholar
Molina, J.M. and Vera, J.A., (2001) Cicatriz de slump en rocas pelágicas del Jurásico: su relación con el subvolcanismo (Priego de Córdoba, Zona Subbética) Geogaceta 30 82 85.Google Scholar
Moody, J.B. Meyer, D. and Jenkins, J.E., (1983) Experimental characterization of the greenschist/amphibolite boundary in mafic systems American Journal of Science 283 4892 10.2475/ajs.283.1.48.Google Scholar
Nieto, F. Velilla, N. Peacor, D.R. and Ortega-Huertas, M., (1994) Regional retrograde alteration of sub-greenschist facies chlorite to smectite Contributions to Mineralogy and Petrology 115 243252 10.1007/BF00310765.Google Scholar
Nieto, F. Ortega-Huertas, M. Peacor, D.R. and Aróstegui, J., (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin Clays and Clay Minerals 44 304323 10.1346/CCMN.1996.0440302.Google Scholar
Ortega-Huertas, M. Palomo, I. Moresi, M. and Oddone, M., (1991) A mineralogical and geochemical approach to establishing a sedimentary model in a passive continental margin (Subbetic Zone, Betic Cordilleras, SE Spain) Clay Minerals 26 389407 10.1180/claymin.1991.026.3.08.Google Scholar
Peacor, D.R. and Buseck, P.R., (1992) Diagenesis and low-grade metamorphism of shales and slates Minerals and Reactions at the Atomic Scales: Transmission Electron Microscopy Washington, D.C. Mineralogical Society of America 113140 10.1515/9781501509735-008.Google Scholar
Pichler, T. Ridley, W.I. and Nelson, E., (1999) Low-temperature alteration of dredged volcanics from the Southern Chile Ridge — additional information about early stages of sea-floor weathering Marine Geology 159 155177 10.1016/S0025-3227(99)00008-0.Google Scholar
Portugal, M. Morata, D. Puga, E. Demant, A. and Aguirre, L., (1995) Evolución geoquímica y temporal del magmatismo básico mesozoico en las Zonas Externas de las Cordilleras Béticas Estudios Geológicos 51 109 118.Google Scholar
Roberts, B. Morrison, C. and Hirons, S., (1990) Low grade metamorphism of the Manx Group, Isle of Man: a comparative study of white mica ‘crystallinity’ techniques Journal of the Geological Society of London 147 271277 10.1144/gsjgs.147.2.0271.Google Scholar
Rowsell, D.M. and De Swardt, A.M.J., (1976) Diagenesis in Cape and Karoo sediments, South of Africa, and its bearing on their hydrocarbon potential Transactions of the Geological Society of South Africa 79 81 145.Google Scholar
Sandler, A. Nathan, Y. Eshet, Y. and Raab, M., (2001) Diagenesis of trioctahedral clays in a Miocene to Pleistocene sedimentary magmatic sequence from the Dead Sea Rift Clay Minerals 36 2947 10.1180/000985501547330.Google Scholar
Schiffman, P. and Fridleifsson, G.O., (1991) The smectite-chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations Journal of Metamorphic Geology 9 679696 10.1111/j.1525-1314.1991.tb00558.x.Google Scholar
Schiffman, P. and Staudigel, H., (1995) The smectite to chlorite transition in a fossil seamount hydrothermal system: The basament complex of La Palma, Canary Islands Journal of Metamorphic Geology 13 487498 10.1111/j.1525-1314.1995.tb00236.x.Google Scholar
Shau, Y.H. and Peacor, D.R., (1992) Phyllosilicates in hydrothermally altered basalts from DSDP hole 504B, leg 83-A TEM and AEM study Contributions to Mineralogy and Petrology 112 119133 10.1007/BF00310959.Google Scholar
Shau, Y.H. Peacor, D.R. and Essene, E.J., (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies Contributions to Mineralogy and Petrology 105 123142 10.1007/BF00678980.Google Scholar
Stackes, D.S. and O’Neil, J.R., (1982) Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks Earth and Planetary Science Letters 57 285304 10.1016/0012-821X(82)90151-0.Google Scholar
Vera, J.A. Molina, J.M. Montero, P. and Bea, F., (1997) Jurassic guyots on the southern Iberian Continental margin: a model of isolated carbonate platforms in volcanic submarine edifices Terra Nova 9 163166 10.1046/j.1365-3121.1997.d01-22.x.Google Scholar
Vitali, F. Blanc, G. Larque, P. Duplay, J. and Morvan, G., (1999) Thermal diagenesis of clay minerals within volcanogenic material from the Tonga Convergent Margin Marine Geology 157 105125 10.1016/S0025-3227(98)00134-0.Google Scholar
Yamada, H. Yoshioka, K. Tamura, K. Fujii, K. and Nakazawa, H., (1999) Compositional gap in dioctahedral-trioctahedral smectite system: Beidellite-saponite pseudo-binary join Clays and Clay Minerals 47 803810 10.1346/CCMN.1999.0470616.Google Scholar