Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T03:04:31.991Z Has data issue: false hasContentIssue false

An Integrated Methodological Approach for Source-Clay Determination of Ancient Ceramics: The Case of Aegina Island, Greece

Published online by Cambridge University Press:  01 January 2024

George E. Christidis*
Affiliation:
Technical University of Crete, Department of Mineral Resources Engineering, 73100 Chania, Greece
Christine M. Shriner
Affiliation:
Department of Geological Sciences, Indiana University, 47405, Bloomington, IN, USA
Haydn H. Murray
Affiliation:
Department of Geological Sciences, Indiana University, 47405, Bloomington, IN, USA
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new model is proposed for analysis of the source clays used to create ceramics, based on geographic, petrographic, mineralogical, mineral-chemistry, and geochemical criteria. The development of this model became feasible after the discovery of a Pliocene volcanic clay horizon on NWAegina Island, Greece. The volcanic clay contains smectite, mixed-layer chlorite-smectite, biotite, and palygorskite and has greater feldspar content than the underlying Pliocene marls, which contain R0 mixed-layer illitesmectite, mica, dolomite, serpentine, talc and gypsum, and, in some places, palygorskite. The two units have distinct geochemical characteristics. In general the Pliocene volcanic clay is richer in SiO2, Al3O3, and Fe2O3 and poorer in Na2O, MgO, and P2O2 than the Pliocene marls. The Nb, Zr, Hf, Th, and rare earth element (REE) contents are also significantly greater in the Pliocene volcanic clay and comparable to those of the dacitic rocks of the island, reflecting the volcanic origin of the clay.

The proposed model was used to identify the source-clay materials that were used for the production of ceramics on the island of Aegina (Aeginetan Ware). All five criteria should be considered in any provenance study. The use of individual criteria on their own can lead to ambiguous conclusions. In the present study the geochemical criterion was particularly helpful. It provided robust evidence for the nature of the source clay. The Pliocene volcanic clay horizon and the underlying Pliocene marls are the candidate raw materials for Aeginetan Ware. Although the Pliocene marls have been invoked as raw materials for Greek Bronze Age (~3000–1100 BC) Aeginetan ceramics and are used as raw materials by modern Aeginetan ceramists, the geochemical characteristics of a large set of Bronze Age Greek Aeginetan sherds with fine and coarse fabrics coincide with those of the Pliocene volcanic clay. This comparative and cumulative evidence suggests that the Pliocene volcanic clay was the main source clay for ancient Aeginetan ceramics, regardless of the fabric (coarse or fine) and that admixture of different sources might not be necessary for fine-grained ceramics.

Type
Article
Copyright
Copyright © Clay Minerals Society 2014

Footnotes

Deceased

References

Abbott, D. Lack, A. and Moore, G., 2008 Chemical assays of temper and clay: modeling pottery production and exchange in the uplands north of the Phoenix Basin, Arizona, USA Archeometry 50 4866.CrossRefGoogle Scholar
Alden, J. Minc, L. and Lynch, T., 2006 Identifying the sources of Inka period ceramics from northern Chile: results of a neutron activation study Journal of Archaeological Science 33 575594.CrossRefGoogle Scholar
Beier, T. and Mommsen, H., 1994 Modified Mahalanobis filters for grouping pottery by chemical composition Archeometry 36 287306.CrossRefGoogle Scholar
Benda, L. Jonkers, H.A. Meulenkamp, J.E. and Steffens, P., 1979 Biostratigraphic correlations in the Eastern Mediterranean Neogene Newsletters on Stratigraphy 8 6169.CrossRefGoogle Scholar
Braekmans, D. Degryse, P. Poblome, J. Neyta, B. Vyncke, K. and Waelkens, M., 2011 Understanding ceramic variability: an archaeometrical interpretation of the Classical and Hellenistic ceramics at Düzen Tepe and Sagalassos (southwest Turkey) Journal of Archaeological Science 38 21012115.CrossRefGoogle Scholar
Brophy, J., Christidis, G., Murray, H., and Shriner, C. (in press) Aeginetan Ware (AW) provenancing report. In: Die Frühhelladisch II — Keramik von Ägina Kolonna (Berger, L., editor). Ägina-Kolonna, Forschungen und Ergebnisse, Austrian Academy of Science, Vienna.Google Scholar
Brothwell, D.R. and Pollard, AM e, 2001 Handbook of Archaeological Sciences Chichester, UK John Wiley and Sons, Ltd..Google Scholar
Buxeda i Garrigos, J., 1999 Alteration and contamination of archeological ceramics: the perturbation problem Journal of Archaeological Science 26 295313.CrossRefGoogle Scholar
Christidis, G.E., 2001 Geochemical correlation of bentonites from Milos Island, Aegean, Greece Clay Minerals 36 295306.CrossRefGoogle Scholar
Christidis, G., Murray, H.H., Shriner, C.M., and Brophy, J. (in press) Source clay provenancing report for Aeginetan ware: Ceramic characterization to ceramic provenancing. In: Die Frühhelladisch II — Keramik von Ägina Kolonna (Berger, L.). Ägina-Kolonna, Forschungen und Ergebnisse, Austrian Academy of Science, Vienna.Google Scholar
Collinson, J.D. and Thompson, D.B. (1988) Sedimentary Structures, 2nd edition. Unwin Hyman, London.Google Scholar
Cullers, R. Chaudhuri, S. Kilbane, N. and Koch, R., 1979 Rare-earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A Geochimica et Cosmochimica Acta 43 12851301.CrossRefGoogle Scholar
Cultrone, G. Rodriguez-Navarro, C. Sebastian, E. Cazalla, O. and De La Torre, M.J., 2001 Carbonate and silicate phase reactions during ceramic firing European Journal of Mineralogy 13 621634.CrossRefGoogle Scholar
Day, P.M. and Kiriatzi, E., 1999 Group therapy in Crete: Acomparison between analyses by NAA and thin section petrography of Early Minoan pottery Journal of Archaeological Science 26 10251036.CrossRefGoogle Scholar
Demirci, S. Caner-Saltik, E. Türkmenoglu, A. Özçilingir-Akgün, S. and Bakirer, O., 2004 Raw material characteristics and technological properties of some medieval glazed ceramics and tiles in Anatolia Key Engineering Material 264-268 23952398.CrossRefGoogle Scholar
Dias, M.I. and Prudêncio, M.I., 2008 On the importance of using scandium to normalize geochemical data preceding multivariate analyses applied to archaeometric pottery studies Microchemical Journal 88 136141.CrossRefGoogle Scholar
Dias, M.I. Prudêncio, M.I. Pinto De Matos, M.A. and Luisa Rodrigues, A., 2013 Tracing the origin of blue and white Chinese Porcelain ordered for the Portuguese market during the Ming dynasty using INAA Journal of Archaeological Science 40 30463057.CrossRefGoogle Scholar
Dietrich, V.J. Mercolli, I. and Oberhänsli, R., 1988 Dazite, High-Alumina-Basalte und Andesite als Produkte Amphibol dominierter Differentiation (Ägina und Methana, Ägäischer Inselbogen) Schweizerische Mineralogische & Petrographische Mitteilungen 68 2139.Google Scholar
Dietrich, V. Gaitanakis, P. Mercolli, I. and Oberhansli, R., 1991 Geological map of Greece, Aegina Island, 1:25,000 Zurich Stiftung Vulkaninstitut Immanuel Friedlaender.Google Scholar
Dietz, S., 1991 The Argolid at the Transition to the Mycenaean Age. Studies in the Chronology and Cultural Development in the Shaft Grave Period Copenhagen The National Museum of Denmark.Google Scholar
Dombrowski, T., Murray, H.H. Bundy, W.M. and Harvey, C.C., 1993 Theories of origin for the Georgia kaolins: a review Kaolin Genesis and Utilization Boulder, Colorado, USA The Clay Minerals Society, Special Publications, 1. The Clay Minerals Society 7597.Google Scholar
Dorais, M.J. and Shriner, C.M., 2002a A comparative electron microprobe study of “Aeginetan” wares with potential raw material sources from Aegina, Methana, and Poros, Greece Geoarchaeology: An International Journal 17 555577.CrossRefGoogle Scholar
Dorais, M.J. and Shriner, C.M., 2002b An electron microprobe study of P645/T390: Evidence for an Early Helladic III Lerna-Aegina connection Geoarchaeology: An International Journal 17 755778.CrossRefGoogle Scholar
Dorais, M.J. Lindblom, M. and Shriner, C.M., 2004 Evidence for a single clay/temper source for the manufacture of Middle and Late Helladic Aeginetan pottery from Asine, Greece Geoarcheology: An International Journal 19 657684.CrossRefGoogle Scholar
Douglass, A.A. and Schaller, D.M., 1993 Sourcing Little Colorado White Ware: a regional approach to the compositional analysis of prehistoric ceramics Geoarchaeology: An International Journal 8 177201.CrossRefGoogle Scholar
Faupl, P. Pavlopoulos, A. and Migiros, G., 1998 On the provenance of flysch deposits in the External Hellenides of mainland Greece: results from heavy mineral studies Geological Magazine 135 421442.CrossRefGoogle Scholar
Forseén, J., 1996 Prehistoric Asea revisited Opuscula Atheniensia XXI 4 4172.Google Scholar
Freestone, I. and Gaimster, D. e., 1997 Pottery in the Making: Ceramic Traditions Washington, DC Smithsonian Institution Press.Google Scholar
Gauβ, W. and Kiriatzi, E., 2011 Pottery Production and Supply at Bronze Age Kolonna, Aegina: an integrated archaeological and scientific study of a ceramic landscape Vienna Ägina-Kolonna. Forschungen und Ergebnisse 5. Austrian Academy of Science.Google Scholar
Gonzalez-Lopez, J.M. Bauluz, B. Yuste, A. Mayayo, M.J. and Fernandez-Nieto, C., 2005 Mineralogical and trace element composition of clay-sized fractions from Albian siliciclastic rocks (Oliete Basin, NE Spain) Clay Minerals 40 565580.CrossRefGoogle Scholar
Hein, A. Mommsen, H. and Zender, G., 2004 Pliocene clays from Aegina (Greece): Reference material for chemical provenance studies on Bronze Age pottery from the Island Geoarcheology: An International Journal 19 553564.CrossRefGoogle Scholar
Huff, W.D. Anderson, T.B. Rundle, C.C. and Odin, G.S., 1991 Chemostratigraphy, K-Ar ages and illitization of Silurian K-bentonites from the Central Belt of the Southern Uplands-Down-Longford terrane, British Isles Journal of the Geological Society 148 861868.CrossRefGoogle Scholar
Jones, R.E., 1986 Greek and Cypriot Pottery: A Review of Scientific Studies The British School at Athens Fitch Laboratory Occasional Paper, 1..Google Scholar
Jones, R.E., Zerner, C. Zerner, P. and Winder, J., 1993 Pottery as evidence for trade and colonization in the Aegean Bronze Age: The contribution of scientific techniques Wace and Blegen: Pottery as Evidence for Trade in the Aegean Bronze Age, 1939-1989 Amsterdam Gieben 1117.Google Scholar
Josephs, R., 2005 A petrographic analysis of extended Middle Missouri ceramics from North Dakota Plains Anthropologist 50 111119.CrossRefGoogle Scholar
Kaner, S., 2003 The oldest pottery in the world Current World Archeology 1 4449.Google Scholar
Kingery, W.D., Olin, J.S., 1982 Plausible inferences from ceramic artifacts Archaeological Ceramics Boston, Massachusetts, USA Smithsonian Institution Press 3745.Google Scholar
Li, B.-P. Greig, A. Zhao, J.-X. Collerson, K.D. Quan, K.-S. Meng, Y.-H. and Ma, Z.L., 2005 ICP-MS trace element analysis of Song dynasty porcelains from Ding, Jiexiu and Guantai kilns, north China Journal of Archaeological Science 32 251259.CrossRefGoogle Scholar
Lindblom, M., 2001 Marks and makers: Appearance, distribution and function of Middle and Late Helladic manufacturers’ marks on Aeginetan pottery Jonsered, Sweden Paul Aström Förlag.Google Scholar
Ma, H. Zhu, J. Henderson, J. and Li, N., 2012 Provenance of Zhangzhou export blue-and-white and its clay source Journal of Archaeological Science 39 12181226.CrossRefGoogle Scholar
Marques, R. Jorge, A. Franco, D. Dias, M.I. and Prudêncio, M.I., 2010 Clay resources in the Nelas region (Beira Alta), Portugal A contribution to the characterization of potential raw materials for prehistoric ceramic production. Clay Minerals 45 353370.Google Scholar
Marinoni, L. Setti, M. Salvi, C. and Lopez-Galindo, A., 2008 Clay minerals in Late Quaternary sediments from the south Chilean margin as indicators of provenance and paleoclimate Clay Minerals 43 235253.CrossRefGoogle Scholar
McLennan, S.M. and Taylor, S.R., 1991 Sedimentary rocks and crustal evolution; Tectonic setting and secular trends Journal of Geology 99 121.CrossRefGoogle Scholar
McLennan, S.M. Hemming, S. McDaniel, D.K. Hanson, G.K., Johnson, M.J. and Basu, A., 1993 Geochemical approaches to sedimentation, provenance and tectonics Processes Controlling the Composition of Clastic Sediments Colorado, USA , Geological Society of America, Boulder 2140.CrossRefGoogle Scholar
Middleton, A.P. and Freestone, IC e, 1991 Recent Developments in Ceramic Petrology London British Museum.Google Scholar
Mommsen, H., 2004 Provenancing of Pottery - the need for an integrated approach? Archeometry 46 267271.CrossRefGoogle Scholar
Mommsen, H. and Japp, S., 2009 Neutronenaktivierungsanalyse von 161 Scherben aus Pergamon und Fundorten der Region Istanbuler Mitteilungen 59 269282.Google Scholar
Mommsen, H. Beier, T. Heimermann, D. Hein, A. Ittameier, D. and Podzuweit, C.h., 1994 Neutron activation analysis of selected sherds from Prophitis Ilias (Argolid, Greece): a closed Late Helladic II settlement context Journal of Archaeological Science 21 163171.CrossRefGoogle Scholar
Mommsen, H. Gauss, W. Hiller, S. Ittameier, D. Maran, J., Pohl, E. Recker, U. and Theune, C., 2001 Charakterisierung bronzezeitlicher Keramik von Ägina durch Neutronaktivierungsanalyse Archäologisches Zellwerk, Beiträge zur Kulturgeschichte in Europa und Asien Germany Rahden, Westfalen 7996.Google Scholar
Morris, A., 2000 Magnetic fabric and palaeomagnetic analyses of the Plio-Quaternary calc-alkaline series of Aegina Island, south Aegean volcanic arc, Greece Earth and Planetary Science Letters 176 91105.CrossRefGoogle Scholar
Müller, P. Kreutzer, H. Lenz, H. and Harre, W., 1979 Radiometric dating of two extrusives from a Lower Pliocene marine section on Aegina Island, Greece Newsletters on Stratigraphy 8 7078.CrossRefGoogle Scholar
Nordquist, G.C., 1987 A Middle Helladic Village. Asine in the Argolid Uppsala, Sweden Uppsala University Press.Google Scholar
Pe-Piper, G. Piper, D.J.W. and Reynolds, P.H., 1983 Paleomagnetic stratigraphy and radiometric dating of the Pliocene volcanic rocks of Aegina, Greece Bulletin Volcanologique 46 17.CrossRefGoogle Scholar
Peters, T. and Iberg, R., 1978 Mineralogical changes during firing of calcium-rich clays Ceramic Bulletin 57 503509.Google Scholar
Prudêncio, M.I. Oliveira, F. Dias, M.I. Sequeira Braga, M.A. Delgado, M. and Martins, M., 2006 Raw materials identification used for the manufacture of Roman “Bracarense” ceramics from NW Iberian Peninsula Clays and Clay Minerals 54 639651.CrossRefGoogle Scholar
Pullen, D.J., 2000 The prehistoric remains of the Acropolis at Halieis: A final report Hesperia 69 133187.CrossRefGoogle Scholar
Pullen, D.J., 2011 Early Bronze Age Village on Tsoungiza Hill (Nemea Valley Archaeological Project I) New Jersey, USA American School of Classical Studies at Athens, Princeton.Google Scholar
Rathossi, C. Tsolis-Katagas, P. and Katagas, C., 2004 Technology and composition of Roman pottery in northwestern Peloponnese, Greece Applied Clay Science 24 313326.CrossRefGoogle Scholar
Riederer, J., 2004 Thin section microscopy applied to the study of archaeological ceramics Hyperfine Interactions 154 143158.CrossRefGoogle Scholar
Rotroff, S., 2006 Hellenistic Pottery: the Plain Wares New Jersey, USA American School of Classical Studies at Athens, Princeton.Google Scholar
Ruby, B.J. Shriner, C.M., Carr, C. and Case, D.T., 2005 Ceramic vessel compositions and styles as evidence of the local and non-local social affiliations of ritual participants at the Mann Site, Indiana Gathering Hopewell: Society, Ritual and Ritual Interaction New York Plenum 553572.CrossRefGoogle Scholar
Rutter, J.B., 1989 A ceramic definition of Late Helladic I from Tsoungiza Hydra 6 119.Google Scholar
Rutter, J.B., 1990 Pottery groups from Tsoungiza of the end of the Middle Bronze Age Hesperia 59 375458.CrossRefGoogle Scholar
Setti, M. Marinoni, L. and Lopez-Galindo, A., 2004 Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica Clay Minerals 39 405421.CrossRefGoogle Scholar
Shriner, C.M., 1999 Ceramic Technology at Lerna, Greece in the Third Millennium B.C.: Economic and Social Implications Indiana, USA Indiana University, Bloomington.Google Scholar
Shriner, C. and Dorais, M.J., 1999 A comparative electron microprobe study of Lerna III and IV ceramics and local clay-rich sediments Archeometry 41 2549.CrossRefGoogle Scholar
Shriner, C.M. Christidis, G. Brophy, J. Finger, K. and Murray, H., 2007 Clay mineralogical studies of the source material for Aeginetan Ware, Aegina, Greece The Clay Minerals Society, 44th Annual Meeting Program and Abstracts, June 2–7, 2007 New Mexico Santa Fe.Google Scholar
Shriner, C., Christidis, G., and Murray, H.H. (in press) Ceramic technology report for Aeginetan ware: Unraveling archaeological problems using provenance and processing. In: Die Frühhelladisch II — Keramik von Ägina Kolonna (Berger, L.). Ägina-Kolonna, Forschungen und Ergebnisse, Austrian Academy of Science, Vienna.Google Scholar
Slack, J.F. and Stevens, B.P.J., 1994 Clastic metasediments of the Early Proterozoic Broken Hill Group, New South Wales, Australia: Geochemistry, provenance and metallogenic significance Geochimica et Cosmochimica Acta 58 36333652.CrossRefGoogle Scholar
Stamatakis, M.G. Magganas, A.C., Hein, J.R. and Obradovic, J., 1989 Thermally induced silica transformation in Pliocene diatomaceous layers from Aegina Island, Greece Siliceous Deposits of the Tethys and Pacific Regions New York Springer Verlag 141150.CrossRefGoogle Scholar
Stoltman, J.B., Rotroff, S., 2006 Petrographic analysis Hellenistic Pottery: the Plain Wares New Jersey, USA Princeton 405407.Google Scholar
Tite, M.S., 1999 Pottery production, distribution, and consumption — the contribution of the physical sciences Journal of Archeological Method and Theory 6 181233.CrossRefGoogle Scholar
Traoré, K. Kabré, T.S. and Blanchart, P., 2003 Gehlenite and anorthite crystallization from kaolinite and calcite mix Ceramics International 29 377383.CrossRefGoogle Scholar
Trindade, M.J. Dias, M.I. Coroado, J. and Rocha, F., 2010 Firing tests on clay-rich raw materials from the Algarve Basin (Southern Portugal): study of mineral transformations with temperature Clays and Clay Minerals 58 188204.CrossRefGoogle Scholar
Tsoli-Katagas, P., 1977 Geochemistry of clay formations from the island of Aegina Bulletin of the Geological Society of Greece 13 7196.Google Scholar
Velde, B. and Druc, I.C., 1999 Archaeological Ceramic Materials: Origin and Utilization Berlin Springer.CrossRefGoogle Scholar
Whitbread, I., Brothwell, D.R. and Pollard, A.M., 2001 Ceramic petrology, clay geochemistry and ceramic production — from technology to the mind of the potter Handbook of Archaeological Sciences Chichester, UK John Wiley and Sons, Ltd. 449459.Google Scholar
Whitbread, I.K. Kiriatzi, E. and Tartaron, T., 2002 Middle Bronze Age ceramic production in central and southern mainland Greece: the design of a regional petrographic study Modern Trends in Scientific Studies on Ancient Ceramics Oxford, UK John and Erica Hedges Ltd. 121128.Google Scholar
Wronkiewitz, D.J. and Condie, K.C., 1990 Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic Geochimica et Cosmochimica Acta 54 343354.CrossRefGoogle Scholar
Zerner, C.W., 1986 Middle Helladic and Late Helladic I pottery from Lerna Hydra 2 5874.Google Scholar
Zerner, C.W., Zerner, C.W. Zerner, P. and Winder, J., 1993 New perspectives on trade in the Middle and Early Late Helladic Periods on the mainland Wace and Blegen: Pottery as Evidence for Trade in the Aegean Bronze Age, 1939-1989 Amsterdam Gieben 3956.Google Scholar