Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T22:01:48.925Z Has data issue: false hasContentIssue false

The Alteration Products of Potassium Depleted Oxybiotite

Published online by Cambridge University Press:  01 July 2024

R. J. Gilkes*
Affiliation:
Department of Soil Science and Plant Nutrition, Institute of Agriculture, University of Western Australia, Nedlands, W.A. 6009
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Artificial weathering of biotites, which contain various levels of structural ferric iron, by NaCl and NaBPh4 solutions produces minerals and structures similar to those described for naturally weathered biotites. Oxidation of structural iron leads to K removal from alternate layers and development of hydrobiotite. The growth of order with increasing ferric iron content has been assessed by comparison with theoretical calculations for random and most ordered interstratified structures. There is evidence for the existence of two layer types in biotite prior to oxidation. The depression in rates of K release due to oxidation has been confirmed.

Résumé

Résumé

L’altération artificielle par des solutions Na Cl et Na B Ph4 de biotites de teneurs variées en fer ferrique de constitution, produit des minéraux et des structures semblables à ceux que l’on décrit pour les biotites altérées naturellement. L’oxydation du fer de constitution entraîne l’extraction de K à partir de feuillets alternés et le développement d une hydrobiotite. Le développement de l’ordre avec les teneurs en fer ferrique croissantes a été établi par comparaison avec les calculs théoriques concernant des structures interstratifiées au hasard ou d’une manière plus ordonnée. On apporte une preuve de l’existence de deux types de feuillets existant dans la biotite avant son oxydation. La diminution de la vitesse de libération de K due à l’oxydation a été confirmée.

Kurzreferat

Kurzreferat

Die künstliche Verwitterung von Biotiten, die unterschiedliche Gehalte an Gitter-Fe3+ aufweisen, mit NaCl- und Natriumtetraphenylborat-Lösung ergibt ähnliche Minerale und Strukturen, wie sie für natürlich verwitterte Biotite beschrieben worden sind. Die Oxidation von Gittereisen führt zur K-Freisetzung aus alternierenden Schichten und zur Bildung von Hydrobiotit.

Die Zunahme der Schichtordnung mit steigendem Fe3+-Gehalt wurde durch einen Vergleich mit theoretischen Berechnungen für zufällige und vollständig geordnete Wechsellagerungsstrukturen abgeschätzt. Es bestehen Hinweise auf das Vorliegen von zwei Schichttypen in Biotit vor Eintreten der Oxidation. Die Herabsetzung der Freisettungsrate von K als Folge der Oxidation wurde bestätigt.

Резюме

Резюме

При исскуственном выветривании биотитов, содержащих различные уровни струк¬турного железа, посредством раствора NaCl и NaBPh4, получили минералы структур сходных со структурами естественно выветренных биотитов. Окисление структурного железа ведет к отщеплению К из перемежающихся слоев и к образованию гидробиотита. Количественно оценивался порядок роста при повышающемся содержании железа сравнением с теорети¬ческим анализом произвольного и самого упорядоченного перемежающегося напластования. Существуют экспериментальные данные, поддерживающие существование двух типов слоев в биотите до окисления. Было подтверждено понижение степени скорости выделения К благодаря окислению.

Type
Research Article
Copyright
Copyright © 1973 The Clay Minerals Society

References

Brindley, G. W. and Brown, G., (1961) Quantitative analysis of clay mixtures. I The X-ray Identification and Crystal Structures of Clay minerals London Mineralogical Society.Google Scholar
Brown, G. and Weir, A. H., (1963) The identity of rectorite and allevardite Proc. Int. Clay Conf., Stockholm 1 2735.Google Scholar
De Mumbrum, L. E., (1959) Exchangeable potassium levels in vermiculite and K-depleted micas, and implications relative to potassium levels in soils Soil Sci. Soc. Am. Proc. 23 192194.CrossRefGoogle Scholar
Farmer, V. C., Russell, J. D., Mchardy, W. J., Newman, A. C. D. Ahlrichs, J. L. and Rimsaite, J. Y. H., (1971) Evidence for loss of protons and octahedral iron from oxidised biotites and vermiculites Miner. Mag. 38 121137.CrossRefGoogle Scholar
Gilkes, R. J. and Hodson, F., (1971) Two mixed-layer mica-montmorillonite minerals from sedimentary rocks Clay Miner. 9 125137.CrossRefGoogle Scholar
Gilkes, R. J., Young, R. C. and Quirk, J. P., (1972) The oxidation of octahedral iron in biotite Clays and Clay Minerals 20 303315.CrossRefGoogle Scholar
Gilkes, R. J., Young, R. C. and Quirk, J. P., (1973) Artificial weathering of oxidized biotite—I. Potassium removal by sodium chloride and sodium tetraphenylboron solutions Soil Sci. Soc. Am. Proc. 37 2528.CrossRefGoogle Scholar
Gilkes, R. J., Young, R. C. and Quirk, J. P., (1973) Artificial weathering of oxidized biotites—II. Rates of dissolution in 0·1, 0·01, 0·001 M HCl Soil Sci. Soc. Am. Proc. 37 2933.CrossRefGoogle Scholar
MacEwan, D. M. C. Ruiz Amil, A., Brown, G. and Brown, G., (1961) Interstratified Clay minerals The X-ray identification and Crystal Structures of Clay minerals London Mineralogical Society.Google Scholar
Mortland, M. M., (1958) Kinetics of potassium release from biotite Soil Sci. Soc. Am. Proc. 22 503508.CrossRefGoogle Scholar
Newman, A. C. D., (1969) Cation exchange properties of micas J. Soil Sci. 20 298373.CrossRefGoogle Scholar
Newman, A. C. D. and Brown, G., (1966) Chemical changes during the alteration of micas Clay Miner 6 297310.CrossRefGoogle Scholar
Rausell-Colom, J. A., Sweatman, T. R., Wells, C. B. and Norrish, K., (1965) Studies in the artificial weathering of mica. Experimental pedology, Proc Univ. Nottingham 11th Easter Sch. Agric. Sci. 4072.Google Scholar
Rhoades, J. D. and Coleman, N. T., (1967) Interstratifica-tion in vermiculite and biotite produced by potassium sorption—I. Evaluation by simple X-ray diffraction pattern inspection Soil Sci. Soc. Am. Proc. Am. Proc. 31 366372.CrossRefGoogle Scholar
Ruiz Amil, A., Garcia, A. R. and MacEwan, D. M. C., (1966) X-ray Diffraction Curves for the Analysis of interstratified Structures Edinburgh Volturna Press.Google Scholar
Scott, A. D. and Reed, M. G., (1962) Chemical Extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron: II Biotite Soil Sci. Soc. Am. Proc. 26 4145.CrossRefGoogle Scholar
Tornita, K. and Dozono, M., (1972) Formation of an inter-stratified mineral by extraction of potassium from mica with sodium tetraphenylboron Clays and Clay Minerals. 20 225231.Google Scholar
Walker, G. F., (1949) The decomposition of biotite in the soil Miner. Mag. 28 693703.Google Scholar
Wilson, M. J., (1970) A study of weathering in a soil derived from a biotite-hornblende rock—I. Weathering of biotite Clay Miner. 8 291303.CrossRefGoogle Scholar