Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T18:18:14.301Z Has data issue: false hasContentIssue false

Alteration of Silicic Vitric Tuffs Interbedded in Volcaniclastic Deposits of the Southern Basin and Range Province, Mexico: Evidences for Hydrothermal Reactions

Published online by Cambridge University Press:  28 February 2024

Philippe Münch
Affiliation:
Laboratoire de Pétrologie Magmatique, U.R.A. C.N.R.S. 1277, Faculté St. Jérôme, Université Aix-Marseille III, 13397 Marseille cedex 20, France
Joëlle Duplay
Affiliation:
Centre de Géochimie de la Surface, CNRS, 1 rue Blessig, 67084 Strasbourg cedex, France
Jean-Jacques Cochemé
Affiliation:
Laboratoire de Pétrologie Magmatique, U.R.A. C.N.R.S. 1277, Faculté St. Jérôme, Université Aix-Marseille III, 13397 Marseille cedex 20, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Northwestern Mexico, the Miocene basins that disrupted the Sierra Madre Occidental Province are filled with sandstones and conglomerates (the Báucarit Formation) cemented mainly by zeolites of the heulandite-clinoptilolite group. Few volcanic tuffs are intercalated in the sediments for which four different groups of samples have been defined. These groups correspond to a gradation in the alteration of the glassy matrix. Group 1 is characterized by the preservation of the glassy matrix and the presence of disseminated patches of clay minerals with a continuous variation between aluminous Al-montmoril-lonite and ferric smectite end-members. Heulandite-group zeolites and opal C-T are also present. Group 2 is characterized by a nearly complete replacement of volcanic glass by a more homogeneous Al-montmorillonite. In some samples, heulandite-group zeolites are present as clusters on clay minerals. The primary vitroclastic texture is generally preserved and relict glass is present in small amounts. In group 3, the secondary assemblage is dominated by heulandite-group zeolite crystals as pseudomorphs of shards and pumiceous fragments. Discrete illite is present in all samples. Textures are exceptionally well-preserved. Group 4 is characterized by the presence of heulandite and clay minerals in which the Mg-Fe smectite end-member is more magnesian than in other groups. The original texture is not preserved.

The following are deduced from the mass-balance calculations: the alteration of the tuffs leads to a strong Mg- and Ca- and, to a lesser degree, Fe-enrichment, and to Na and K depletion. Zeolites account for Ca-enrichment and clay minerals are host for Fe and Mg. As a consequence, alteration may have occurred under open system conditions and the most likely source for the high Ca and Mg gains is a fluid circulating through the underlying volcaniclastic sediments and underlying mid-Tertiary volcanics of the bimodal (basaltic-rhyolitic) sequence. However, those fluids may have been rather dilute and weakly alkaline.

As estimated temperatures are between 85 and 125°C and as there is only a low burial, it is proposed that hot fluids are responsible for the alteration of volcanic glass. A decrease with time in the initial permeability of the tuffs is consistent with the observed evolution of the changing Al-smectite toward a more magnesian composition.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

References

Alietti, A., Gottardi, G. and Poppi, L.. 1974. The heat behaviour of the cation exchanged zeolites with heulandite structure. Tschermacks Miner Petrogr mitt 21: 291298.CrossRefGoogle Scholar
Altaner, S.P. and Grim, R.E.. 1990. Mineralogy, chemistry, and diagenesis of tuffs in the Sucker Creek formation (Miocene), Eastern Oregon. Clays & Clay Miner 38: 561572.CrossRefGoogle Scholar
Aniel, B.. 1983. Les gisements d'uranium associés au volcanisme acide tertiaire de la Serra Pena Blanca (Chihuahua, Mexique). Thèse Doct., univ. Paris VI. 291p.Google Scholar
Arakami, S. and Lipman, P.W.. 1965. Possible leaching of Na2O during hydration of volcanic glasses. Proc Jpn Acad 41: 467470.Google Scholar
Bailey, S.W.. 1984. Classification and structures of the micas. In: Bailey, S.W., editor. Micas. Reviews in Mineralogy, Mineral Soc Amer 13: 112.Google Scholar
Banfield, J.F., Jones, B.F. and Veblen, D.R.. 1991a. An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon. 1. Weathering reactions in the volcanics. Geochim Cosmochim Acta 55: 27812794.CrossRefGoogle Scholar
Banfield, J.F., Jones, B.F. and Veblen, D.R.. 1991b. An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon. 2. Diagenetic modification of the sedimentary assemblage. Geochim Cosmochim Acta 55: 27952810.CrossRefGoogle Scholar
Barrows, K.J.. 1980. Zeolitization of Miocene volcaniclastic rocks, southern Desatoya Mountains, Nevada: Geol Soc Amer Bull P-1, 91: 199210.Google Scholar
Bartolini, C., Morales, M., Damon, P. and Shafiqullah, M.. 1992. K-Ar ages of tilted tertiary volcanic rocks associated with continental conglomerates, Sonoran Basin and Range Province, Mexico. Geol Soc Am, Cordilleran Section, Abstracts with Programs 24: 6.Google Scholar
Besse, D., Desprairies, A., Jehannot, C. and Kolla, V.. 1981. Les paragenèses de smectites et de zéolites dans une série pyro-clastique d'âge éocène moyen de l'Océan Indien (D.S.D.P., Leg 26, Site 253). Bull Miner 104: 5663.CrossRefGoogle Scholar
Bish, D.L.. 1984. Effects of exchangeable cation composition on the thermal expansion/contraction of clinoptilolite. Clays & Clay Miner 32: 444452.CrossRefGoogle Scholar
Bockoven, N.T.. 1980. Reconnaissance geology of the Yécora-Ocampo area, Sonora and Chihuahua, Mexico. Ph. D. Thesis, Univ. of Texas, Austin. 197 p.Google Scholar
Boles, J.R. and Surdam, R.C.. 1979. Diagenesis of volcanogenic sediments in tertiary saline lake; Wagon Bed Formation, Wyoming. Am J Sci 279: 832853.CrossRefGoogle Scholar
Boles, J.R. and Wise, W.S.. 1978. Nature and origin of deep-sea clinoptilolite. In Sand, L.B., Mumpton, F.A., editors. Natural Zeolites, Occurrence, Properties, Use. Elmsford, New York: Pergamon Press. 235243.Google Scholar
Brigatti, M.F.. 1983. Relationships between composition and structure in Fe-rich smectites. Clay Miner 18: 177186.CrossRefGoogle Scholar
Broxton, D.E., Bish, D.L. and Warren, R.G.. 1987. Distribution and chemistry of diagenetic minerals at Yucca Mountain, Nye County, Nevada. Clays & Clay Miner 35: 89110.CrossRefGoogle Scholar
Cho, M.. 1991. Zeolite to prehnite-pumpellyite facies meta-morphism in the Toa Baja Drill Hole, Puerto Rico. Geophys Res Lett 18: 525528.CrossRefGoogle Scholar
Cliff, G. and Lorimer, G.W.. 1975. The quantitative analysis of thin specimens. J Microsc 103: 203207.CrossRefGoogle Scholar
Cochemé, J.J., Demant, A., Aguirre, L. and Hermitte, D.. 1988. Présence de Heulandite dans les remplissages sédimentaires liés au “Basin and Range” (Formation Báucarit) du nord de la Sierra Madre Occidentale (Mexique). C R Acad Sci Paris 307: 11, 643649.Google Scholar
Coombs, D.S., Ellis, A.J., Fyfe, W.S. and Taylor, A.M.. 1959. The zeolite facies, with comments on the interpretation of hydro-thermal syntheses. Geochim Cosmochim Acta 17: 53107.CrossRefGoogle Scholar
Danyak, L.G., Drits, V.A., Kudryavtsev, I., Simanovich, I.M. and Slonimskaya, M.V.. 1980. Crystallochemical specificity of trioctahedral smectite containing ferric iron, the secondary alteration of oceanic and continental basalts. Doklady Akademii Nauk SSSR 259: 14581462.Google Scholar
Decarreau, A. and Bonin, D.. 1986. Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of co-precipitated gels: experiments in partially reducing conditions. Clay Miner 21: 861877.CrossRefGoogle Scholar
Decarreau, A., Badaut-Trauth, D., Couty, R. and Kaiser, P.. 1987. Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Miner 22: 207223.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J.. 1962. Sheet silicates. In: Rock-Forming Minerals. New York: J. Wiley & Sons. 270p.Google Scholar
Delpretti, P.. 1987. Contribution à l'étude de la Sierra Madre Occidentale (Mexique): la séquence volcanique tertiaire de la transversale Tepoca-Yepachic. Thèse Doct., Univ. Aix-Marseille III. 344 p.Google Scholar
Demant, A., Cochemé, J.J., Delpretti, P. and Piguet, P.. 1989. Geology and petrology of the Tertiary volcanics of the northwestern Sierra Madre Occidental, Mexico. Bull Soc Géol Fr (8) 5: 737748.CrossRefGoogle Scholar
Drewes, H.D.. 1981. Tectonics of southeastern Arizona. U.S. Geol Surv Prof Pap 1144.CrossRefGoogle Scholar
Gonzales, S.J.. 1993. University of Sonora, Hermosillo, Mexico: personal communication.Google Scholar
Gresens, R.L.. 1967. Composition-volume relationship of metasomatism. Chem Geol 2: 4765.CrossRefGoogle Scholar
Güven, N.. 1988. Smectites. In: Bailey, S.W., editor. Hydrous phyllosilicates (exclusive of micas). Reviews in Mineralogy, Mineral Soc Am 19: 497552.CrossRefGoogle Scholar
Güven, N., Hower, W.F. and Davies, D.K.. 1980. Nature of authigenic illites in sandstone reservoirs. J Sed Petrol 50: 761766.Google Scholar
Iijima, A.. 1978. Geologic occurrences of zeolites in marine environments. In: Sand, L.B., Mumpton, F.A., editors. Natural zeolites: Occurrence, Properties, Use. Elmsford, New York: Pergamon Press. 175198.Google Scholar
Iijima, A.. 1988. Diagenetic transformations of minerals as exemplified by zeolites and silica minerals -a Japanese view. In: Chilingarian, G.V., Wolf, K.H., editors. Diagenesis II. Amsterdam: Elsevier. 147211.CrossRefGoogle Scholar
Iijima, A. and Utada, M.. 1971. Present-day zeolitic diagenesis of the Neogene geosynclinal deposits of the Niigata oil field, Japan. In: Molecular sieve zeolites I. Am Chem Soc Adv Chem Ser 101: 342349.Google Scholar
Inoue, A., Kohyama, N., Kitagawa, R. and Watanabe, T.. 1987. Chemical and morphological evidence for the conversion of smectite to illite. Clays & Clay Miner 35: 111120.CrossRefGoogle Scholar
Jones, B.F.. 1965. The hydrology and mineralogy of Deep Springs Lake, Inyo County, California. U.S. Geol Surv Prof Pap 502-A: 56p.CrossRefGoogle Scholar
Jones, B.F.. 1986. Clay mineral diagenesis in lacustrine sediments. In: Mumpton, F.A., editor. Studies in diagenesis. U.S. Geol Surv Bull 1578: 291296.Google Scholar
Jones, B.F. and Weir, A.H.. 1983. Clay minerals of lake Abert, an alkaline, saline lake. Clays & Clay Miner 31: 161172.CrossRefGoogle Scholar
Keith, T.E.C., White, D.E. and Beeson, M.H.. 1978. Hydrothermal alteration and self-sealing in Y-7 and Y-8 drill holes in northern part of Upper Geyser Basin, Yellowstone National Park, Wyoming. U.S. Geol Surv Prof Pap 1054-A: A1A26.Google Scholar
Keller, W.D., Reynolds, R.C. and Inoue, A.. 1986. Morphology of clay minerals in the smectite-to-illite conversion series by scanning electron microscopy. Clays & Clay Miner 34: 187197.CrossRefGoogle Scholar
King, R.E.. 1939. Geological reconnaissance in northern Sierra Madre Occidental of Mexico. Geol Soc Am Bull 50: 16251722.CrossRefGoogle Scholar
Kohyama, N., Shimoda, S. and Sudo, T.. 1973. Iron-rich saponite (ferrous and ferric forms). Clays & Clay Miner 21: 229237.CrossRefGoogle Scholar
Koyama, K. and Takeuchi, Y.. 1977. Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Z Kristallogr 145: 216239.CrossRefGoogle Scholar
Miranda, M.. 1980. Geoquimica de sedimentos de arroyo del districto uranifero. Sierra de Pena Blanca Chihuahua. UR-AMEX private Dept. 47p.Google Scholar
Mumpton, F.A.. 1960. Clinoptilolite redefined. Am Mineral 45: 351369.Google Scholar
Münch, P.. 1993. Pétrologie et géochimie des tufs et des roches volcano-détritiques des bassins Miocènes dans la région du Sonora, Mexique: contribution à l'étude du métamorphisme de trés bas degré en contexte distensif. Thèse Univ. Aix-Marseille III. 225p.Google Scholar
Münch, P. and Cochemé, J.J.. 1993. Heulandite-group zeolites in volcaniclastic deposits of the southern Basin and Range province, Mexico. Eur J Min 5: 171180.CrossRefGoogle Scholar
Noble, D.C.. 1967. Sodium, potassium, and ferrous iron contents of some secondarily hydrated natural silicic glasses. Am Mineral 52: 280286.Google Scholar
Ogihara, S. and Iijima, A.. 1989. Clinoptilolite to heulandite transformation in burial diagenesis. In: Jacobs, P.A., van Santen, R.A., editors. Zeolites: Facts, Figures, Future. 491500.Google Scholar
Passaglia, E.. 1970. The crystal chemistry of chabazites. Am Miner 55: 12781301.Google Scholar
Rettke, R.C.. 1981. Probable burial diagenetic and provenance effects on Dakota group clay mineralogy, Denver basin. J Sed Petrol 51: 05410551.Google Scholar
Roberson, H.E. and Lahann, R.. 1981. Smectite to illite conversion rates: effects of solution chemistry. Clays & Clay Miner 29: 129135.CrossRefGoogle Scholar
Smyth, J.R.. 1982. Zeolite stability constraints on radioactive waste isolation in zeolite-bearing volcanic rocks. J Geol 90: 195201.CrossRefGoogle Scholar
Srodon, J. and Eberl, D.D.. 1984. Illite. In: Bailey, S.W., editor. Micas. Reviews in Mineralogy 13, Mineral Soc Am 495544.Google Scholar
Surdam, R.C.. 1978. Zeolites in closed hydrologic systems. In: Mumpton, F.A., editor. Mineralogy and geology of natural zeolites. Reviews in Mineralogy 4. Washington, D.C.: Mineral Soc Am 6591.Google Scholar
Tardy, Y., Duplay, J. and Fritz, B.. 1987. Stability fields of smectites and illites as a function of temperature and chemical composition. In: Proc Internat Meeting “Geochemistry of the Earth Surface and Processes of Mineral Formation”, Granada. 461494.Google Scholar
Thomassin, J.H. and Iiyama, J.T.. 1988. Etude expérimentale des stades précoces de l'altération hydrothermale de matériaux vitreux: cas d'une obsidienne (300°C —100MPa). Bull Minéral 111: 633647.CrossRefGoogle Scholar
Weaver, E. and Pollard, L.D.. 1975. The chemistry of clay minerals. Developments in Sedimentology 15. Amsterdam: Elsevier. 213p.Google Scholar
Weir, A.H., Ormerod, E.G. and El Mansey, I.M.I.. 1975. Clay mineralogy of sediments of the western Nile Delta. Clay Miner 10: 369386.CrossRefGoogle Scholar
White, A.F., Claassen, H.C. and Benson, L.V.. 1980. The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainier Mesa, Nevada. U.S. Geol Surv Water-Supply Pap 1535-Q. 34 p.Google Scholar
Yau, Y.-C., Peacor, D.R. and McDowell, S.D.. 1987. Smectite-to-illite reactions in Salton sea shales: a transmission and analytical electron microscopy study. J Sed Petrol 57: 335342.Google Scholar
Yau, Y.-C., Peacor, D.R., Beane, R.E. and Essene, E.J.. 1988. Micro-structures, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, Salton sea, California. Clays & Clay Miner 36: 110.Google Scholar
Zoback, M.L., Anderson, R.E. and Thompson, G.A.. 1981. Cenozoic evolution of the state of stress and style of tectonism of the Basin and Range province of the western United States. Phil Trans R Soc Lond 300: 407434.Google Scholar