Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T02:35:06.976Z Has data issue: false hasContentIssue false

AFM Study of Smectites in Hybrid Langmuir-Blodgett Films: Saponite, Wyoming Bentonite, Hectorite, and Laponite

Published online by Cambridge University Press:  01 January 2024

Tamás Szabó
Affiliation:
Centre for Surface Chemistry and Catalysis, K.U.Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium Department of Colloid Chemistry, University of Szeged, Aradi Vt 1, H-6720 Szeged, Hungary
Jun Wang
Affiliation:
Centre for Surface Chemistry and Catalysis, K.U.Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium Chemistry College, Huazhong Normal University, Wuhan, Hubei, China 430079
Alexander Volodin
Affiliation:
Department of Physics and Astronomy, K.U. Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
Chris van Haesendonck
Affiliation:
Department of Physics and Astronomy, K.U. Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
Imre Dekany
Affiliation:
Department of Colloid Chemistry, University of Szeged, Aradi Vt 1, H-6720 Szeged, Hungary
Robert A. Schoonheydt*
Affiliation:
Centre for Surface Chemistry and Catalysis, K.U.Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sizes and shapes of single clay mineral layers are difficult to determine though they are important parameters which determine the final properties of clay polymer nanocomposites and of ultrathin clay mineral films. To determine these sizes and shapes, hybrid monolayers of clay minerals (saponite, hectorite, Wyoming bentonite, and Laponite) and Rhodamine B octadecyl ester Perchlorate (RhB18) were prepared using the Langmuir-Blodgett (LB) technique and studied with atomic force microscopy (AFM). The AFM images reveal monolayers of elementary clay mineral layers, which are randomly oriented and have a wide range of sizes. The layers have typical shapes: lath-like for hectorite, plates for Wyoming bentonite, a mixture of laths and plates for saponite, and aggregates of very small layers of Laponite. Two types of layers were present in the LB films of saponite, Wyoming bentonite, and hectorite in a 40:60 ratio: (1) single layers 0.96 nm thick hybridized with RhB18; and (2) particles consisting of two clay layers with an intercalated monomolecular layer of water molecules and hybridized with RhB18. The Laponite particles in the hybrid LB films consist mainly of aggregates of two and three single layers.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Balnois, E. Durand-Vidal, S. and Levitz, P., 2003 Probing the morphology of laponite clay colloids by atomic force microscopy Langmuir 19 66336637 10.1021/la0340908.CrossRefGoogle Scholar
Beutelspacher, H. and van der Marel, H.W., 1968 Atlas of Electron Microscopy of Clay Minerals and their Admixtures: A Picture Atlas Amsterdam Elsevier 10.1097/00010694-196809000-00021 333 pp.CrossRefGoogle Scholar
Bickmore, B.R. Hochella, M.F. Bosbach, D. and Charlet, L., 1999 Methods for performing atomic force microscopy imaging of clay minerals in aqueous solutions Clays and Clay Minerals 47 573581 10.1346/CCMN.1999.0470504.CrossRefGoogle Scholar
Bickmore, B.R. Nagy, K.L. Sandlin, P.E. and Crater, T.S., 2002 Quantifying surface areas of clays by atomic force microscopy American Mineralogist 87 780783 10.2138/am-2002-5-622.CrossRefGoogle Scholar
Bujdak, J., 2006 Effects of layer charge of clay minerals on optical properties of organic dyes. A review Applied Clay Science 34 5873 10.1016/j.clay.2006.02.011.CrossRefGoogle Scholar
Cadene, A. Durand-Vidal, S. Turq, P. and Brendle, J., 2005 Study of individual Na-montmorillonite particle size, morphology and apparent charge Journal of Colloid and Interface Science 285 719730 10.1016/j.jcis.2004.12.016.CrossRefGoogle Scholar
Čapková, P. Mal, P. Pospíšil, M. Klika, Z. Weissmonová, H. and Weiss, Z., 2004 Effect of surface and interlayer structure on the fluorescence of rhodamine B-montmorillonite: modeling and experiment Journal of Colloid and Interface Science 277 128137 10.1016/j.jcis.2004.03.035.CrossRefGoogle ScholarPubMed
Carrado, K.A. and Bergaya, F., 2007 Clay-based polymer nano-composites (CPN) Chantilly, Virginia, USA The Clay Minerals Society 278 pp.CrossRefGoogle Scholar
Cenens, J. and Schoonheydt, R.A., 1988 Visible spectroscopy of methylene blue on hectorite, laponite B and barasym in aqueous suspension Clays and Clay Minerals 36 214224 10.1346/CCMN.1988.0360302.CrossRefGoogle Scholar
Klika, Z. Weissmonová, H. Čapková, P. and Pospíšil, M., 2004 The rhodamine B intercalation of montmorillonite Journal of Colloid and Interface Science 275 243250 10.1016/j.jcis.2004.02.040.CrossRefGoogle ScholarPubMed
Lindgreen, H. Garnaes, J. Hansen, P.L. Besenbacher, F. Laesgaard, E. Stensgaard, I. Gould, S.A.C. and Hansma, P.K., 1991 Ultrafine particles of North Sea illite/smectite clay minerals investigated by STM and AFM American Mineralogist 76 12181222.Google Scholar
Ras, R.H.A. Johnston, C.T. Franses, E.I. Ramaekers, R. Maes, G. Foubert, P. De Schryver, F.C. and Schoonheydt, R.A., 2003 Polarized infrared study of hybrid Langmuir-Blodgett monolayers containing clay minerals Langmuir 19 42954302 10.1021/la026786r.CrossRefGoogle Scholar
Ras, R.H.A. Németh, J. Johnston, C.T. DiMasi, E. Dékany, I. and Schoonheydt, R.A., 2004 Hybrid Langmuir-Blodgett monolayers containing clay minerals: effect of clay concentration and layer charge density on the film formation Physical Chemistry Chemical Physics 6 41744184 10.1039/B405862C.CrossRefGoogle Scholar
Ras, R.H.A. Németh, J. Johnston, C.T. Dékany, I. and Schoonheydt, R.A., 2004 Orientation and conformation of octadecyl rhodamine B in hybrid Langmuir-Blodgett monolayers containing clay minerals Physical Chemistry Chemical Physics 6 53475352 10.1039/B411339J.CrossRefGoogle Scholar
Ras, R.H.A. Umemura, Y. Johnston, C.T. Yamagishi, A. and Schoonheydt, R.A., 2007 Ultrathin hybrid films of clay minerals Physical Chemistry Chemical Physics 9 918932 10.1039/B610698F.CrossRefGoogle ScholarPubMed
Roberts, G.G., 1990 Langmuir-Blodgett Films New York Plenum Press 10.1007/978-1-4899-3716-2.CrossRefGoogle Scholar
Ruiz-Hitzky, E. Ariya, K. and Lvov, Y.u., 2008 Bio-inorganic Hybrid Nanomaterials Germany Wiley-VCH, Weinheim 503 pp.Google Scholar
Tournassat, C. Neaman, A. Villiéras, F. Bosbach, D. and Charlet, L., 2003 Nanomorphology of montmorillonite particles: estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations American Mineralogist 88 19891995 10.2138/am-2003-11-1243.CrossRefGoogle Scholar
Yariv, S., Yariv, S. Cross, H., 2001 Staining of clay minerals and visible absorption spectroscopy of dye-clay complexes Organo-clay Complexes and Interactions New York Marcel Dekker 463566 10.1201/9781482270945.CrossRefGoogle Scholar
Zbik, M. and Smart, R.S.t.C., 1998 Nanomorphology of kaolinites: comparative SEM and AFM studies Clays and Clay Minerals 46 153160 10.1346/CCMN.1998.0460205.CrossRefGoogle Scholar