Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T18:16:19.291Z Has data issue: false hasContentIssue false

Adsorption of Cr(NH3)63+ and Cr(en)33+ on Clay Minerals and the Characterization of Chromium by X-Ray Photoelectron Spectroscopy

Published online by Cambridge University Press:  01 July 2024

M. H. Koppelman*
Affiliation:
Department of Chemistry, Virginia Polytechnic Institute and State University, 24061, Blacksburg, Virginia, USA
J. G. Dillard
Affiliation:
Department of Chemistry, Virginia Polytechnic Institute and State University, 24061, Blacksburg, Virginia, USA
*
1Present address: Georgia Kaolin Research, 25 Route 22, East, 07081, Springfield, New Jersey, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nature of Cr(NH3)63+ and Cr(en)33+ (en = ethylenediamine) adsorbed on chlorite, illite, and kaolinite has been studied by X-ray photoelectron spectroscopy (XPS). The interaction of the chromium complexes with the clays began at pH 3. During the 7-day interaction time the pH of the complex-clay suspension increased to 8 for illite and chlorite. For kaolinite the pH increased to about 3.6 with Cr(NH3)63+ and to 6.4 with Cr(en)33+. These pH changes appear to be associated with a clay-catalyzed hydrolysis of the chromium-amine complexes. XPS binding-energy data for adsorbed chromium indicate that the dominant species are chromium aqua complexes. Nitrogen/chromium atom ratios, calculated from the XPS photopeak intensities, are less than 6:1 for complexes adsorbed on the clays, suggesting that chromium complexes are initially adsorbed but subsequently hydrolyze to produce aqua-chromium surface species.

Резюме

Резюме

С помощью рентгеновской фотоэлектронной спектроскопии (РФС) изучалась природа Cr(NH3)63+ и Сг(эн)з3+(эн = этилендиамин), адсорбированных хлоритом, иллитом, и каолинитом. Взаимодействие соединений хрома с глинами началось при pH = 3. За период взаимодействия в течение 7 дней pH суспензии глины (иллита или хлорита) и рассматриваемых соединений увеличилось до 8. При использовании каолинита pH увеличилось примерно до 3,6 с Cr(NH3)63+и до 6,4 с Сг(эн)з3+. Эти изменения pH, по-видимому, связаны с гидролизом хром-аминовых соединений, причем глина выступала как катализатор. Данные РЭС о связующей энергии для адсорбированного хрома указывают на то, что преобладающими видами являются водные соединения хрома. Отношения атомов азота к атомам хрома, вычисленных по данным интенсивностей фотопиков РФС, оказались меньше, чем 6:1 для соединений, адсорбированных глинами. Это позволяет предположить, что соединения хрома сначала адсорбируются, но потом гидролизуются, образовывая водно-хромовые поверхностные виды. [N. R.]

Resümee

Resümee

Die Natur von Cr(NH3)63+ und Cr(en)33+ (En = Åthylendiamin), die am Chlorit, Illit sowie Kaolinit adsorbiert waren, wurden mittels Röntgenphotoelektronen-Spektroskopie (XPS) untersucht. Die Einwirkung der Chromkomplexe auf die Tone wurde bei pH 3 begonnen. Während der 7-tägigen Einwirkungszeit wuchs der pH der Komplex-Tonsuspension bei Illit und Chlorit auf 8. Bei Kaolinit wuchs der pH mit Cr(NH3)63+ auf etwa 3,6 und mit Cr(en)33+ auf 6,4. Die pH-Veränderungen scheinen mit einer durch den Ton katalysierten Hydrolyse des Chrom-Aminkomplexes zusammenzuhängen. XPS-Bindungsener- giedaten für adsorbiertes Chrom zeigen, daß die vorherrschenden Arten Chrom-Wasserkomplexe sind. N/ Cr-Atomverhältnisse, die aus den XPS-Peakintensitäten berechnet wurden, sind kleiner als 6:1 bei Komplexen, die an den Tonen adsorbiert sind. Dieses Ergebnis deutet darauf hin, daß die Chromkomplexe in ihrem ursprünglichen Zustand adsorbiert werden, aber anschließend hydrolysieren und Wasser-ChromOberflächenarten bilden. [U.W.]

Résumé

Résumé

La nature de Cr(NH3)63+ et de Cr(en)33+ (en = éthylenediamine) adsorbée sur la chlorite, l'illite, et la kaolinite a été étudiée par spectroscopie photoélectronique aux rayons-X (XPS). L'interaction des complexes de chromium avec les argiles a commencé au pH 3. Pendant le temps d'interaction de 7 jours, le pH de la suspension de complex d'argile a augmenté à 8 pour l'illite et la chlorite. Pour la kaolinite, le pH a augmenté à à peu près 3,6 avec Cr(NH3)63+ et à 6,4 avec Cr(en)33+. Ces changements de pH semblent être associés avec une hydrolyse des complexes chromium amine catalysée par l'argile. Les données de l’énergie de liaison de XPS pour le chromium adsorbé indique que les espèces dominantes sont des complexes aquaachromium. Les proportions nitrogène/chromium, calculées d'après les intensités des sommets XPS, sont sous 6:1 pour les complexes adsorbés sur les argiles, suggérant que les complexes chromium sont initialement adsorbés, mais ensuite hydrolisent pour produire des espèces de surface aqua chromium. [D. J.]

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1980

References

Alvarez, R. Fadley, C. S. Silva, J. A. and Uehara, G., (1976) A study of silicate adsorption on gibbsite (Al(OH)3) by X-ray photoelectron spectroscopy (XPS) Soil Sci. Soc. Amer. J. 40 615617.CrossRefGoogle Scholar
Bartlett, R. J. and Kimble, J. M., (1976) Behavior of chromium in soils: I. Trivalent forms J. Environ. Qual. 5 379383.CrossRefGoogle Scholar
Bartlett, R. J. and Kimble, J. M., (1976) Behavior of chromium in soils: II. Hexavalent forms J. Environ. Qual. 5 383386.CrossRefGoogle Scholar
Bartlett, R. and James, B., (1979) Behavior of chromium in soils. III. Oxidation J. Environ. Qual. 8 3135.CrossRefGoogle Scholar
Basolo, R. and Pearson, R. G., (1967) Mechanisms of Inorganic Reactions 2nd ed. New York John Wiley 177.Google Scholar
Berkheiser, V. E. and Mortland, M. M., (1977) Hectorite complexes with Cu(II) and Fe(II)-l, 10-phenanthroline chelates Clays & Clay Minerals 25 105112.CrossRefGoogle Scholar
Burba, J. L. and McAtee, J. L., (1977) The orientation and interaction of ethylenediamine copper (II) with montmorillonite Clays & Clay Minerals 25 113118.CrossRefGoogle Scholar
Bumess, J. H. Dillard, J. G. and Taylor, L. T., (1973) Core electron binding energies of cobalt and cobalt(II) schiff base complexes Inorg. Nucl. Chem. Lett. 9 825829.Google Scholar
Cary, E. E. Allaway, W. H. and Olson, O. E., (1977) Control of chromium concentrations in food plants. I. Adsorption and translocation of chromium by plants J. Agrie. Food Chem. 25 300304.CrossRefGoogle Scholar
Catone, D. L. and Matijevič, E., (1976) Interaction of silver halides with metal chelates and chelating agents. II. The effects of Ni(II) and Co(II) complexes J. Colloid Interface Sci. 55 476486.CrossRefGoogle Scholar
Chaussidon, J. Calvet, R. Helsen, J. and Fripiat, J. J., (1962) Catalytic decomposition of Co(III)hexaammine cations on the surface of montmorillonite Nature 196 2013–202.CrossRefGoogle Scholar
Cornet, D. and Burwell, R. L., (1968) Chromium compounds on silica gel J. Amer. Chem. Soc. 90 24892494.CrossRefGoogle Scholar
Cotton, F. A. and Wilkinson, G., (1972) Advanced Inorganic Chemistry 3rd ed. New York Interscience 577.Google Scholar
Coughlan, B. McCann, W. A. and Carroll, W. M., (1977) An electron spectroscopic study of chromium complexes in zeolites L and mordentite Chem. Ind. (London) 358360.Google Scholar
Farmer, V. C. and Mortland, M. M., (1965) An infrared study of complexes of ethylamine with ethylammonium and copper ions in montmorillonite J. Phys. Chem. 69 683686.CrossRefGoogle Scholar
Farrah, H. and Pickering, W. F., (1976) The sorption of copper species by clays. I. Kaolinite Aust. J. Chem. 29 11671176.CrossRefGoogle Scholar
Farrah, H. and Pickering, W. F., (1976) The sorption of copper species by clays. II. Illite and montmorillonite Aust. J. Chem. 29 11771184.CrossRefGoogle Scholar
Fripiat, J. J. and Helsen, J., (1966) Kinetics of decomposition of cobalt coordination complexes on montmorillonite surfaces Clays & Clay Minerals 14 163179.CrossRefGoogle Scholar
Hathaway, B. J. and Lewis, C. E., (1969) Electronic properties of transition-metal complex ions adsorbed on silica gel. Part I. Nickel(II) complexes J. Chem. Soc. (A) 11761182.CrossRefGoogle Scholar
Hathaway, B. J. and Lewis, C. E., (1969) Electronic properties of transition-metal complex ions adsorbed on silica gel. Part II. Cobalt(II) and cobalt(III) J. Chem. Soc. (A) 11831188.Google Scholar
Knudson, M. I. and McAtee, J. L., (1973) The effect of cation exchange of tris (ethylene-diamine) cobalt(III) for sodium on nitrogen sorption by montmorillonite Clays & Clay Minerals 21 1926.CrossRefGoogle Scholar
Koppelman, M. H. and Dillard, J. G., (1977) A study of the adsorption of Ni(II) and Cu(II) by clay minerals Clays & Clay Minerals 25 457462.CrossRefGoogle Scholar
Koppelman, M. H. and Dillard, J. G., (1978) An X-ray photoelectron spectroscopic (XPS) study of cobalt adsorbed on the clay mineral chlorite J. Colloid Interface Sci. 66 345351.CrossRefGoogle Scholar
Koppelman, M. H. Emerson, A. B. and Dillard, J. G., (1980) Adsorbed Cr(III) on chlorite, illite, and kaolinite: An X-ray photoelectron spectroscopic study Clays & Clay Minerals 28 119124.CrossRefGoogle Scholar
Oppegard, A. L. and Bailar, J. C., (1950) Hexaammine chromium(III) nitrate Inorg. Syn. 3 153155.CrossRefGoogle Scholar
Peigneur, P. Lunsford, J. H. DeWilde, W. and Schoonheydt, R. A., (1977) Spectroscopic characterization and thermal stability of copper(II) ethylenediamine complexes on solid surfaces I. Synthetic faujasites types X and Y J. Phys. Chem. 81 11791187.CrossRefGoogle Scholar
Rollison, C. L. and Bailar, J. C., (1946) Tris(ethylenediamine) chromium(III) salts Inorg. Syn. 2 198200.Google Scholar
Scofield, J. H., (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV J. Electron Spectrosc. Relat. Phenom. 8 129137.CrossRefGoogle Scholar
Swartzen-Allen, S. L. and Matijevič, E., (1975) Colloid and surface properties of clay suspensions II. Electrophoresis and cation adsorption of montmorillonite J. Colloid Interface Sci. 50 143153.CrossRefGoogle Scholar
Thompson, T. D. and Brindley, G. W., (1969) Adsorption ol pyrimidines, purines and nucleosides by Na-, Mg-, and Cu(II)-illite Amer. Mineral. 5 858868.Google Scholar
Velghe, F. Schoonheydt, R. A. Uytterhoeven, J. G. Peigneur, P. and Lunsford, J. H., (1977) Spectroscopic characterization and thermal stability of copper(II) ethylenediamine complexes on solid surfaces. 2. Montmorillonite J. Phys. Chem. 81 11871194.CrossRefGoogle Scholar