Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T18:42:02.582Z Has data issue: false hasContentIssue false

Zeolitization of tuffs at Quinamávida, central southern Chile

Published online by Cambridge University Press:  01 January 2024

Sophía Bascuñan
Affiliation:
Instituto de Geología Económica Aplicada, Universidad de Concepció n, Casilla 160-C, Concepción, Chile
Ursula Kelm*
Affiliation:
Instituto de Geología Económica Aplicada, Universidad de Concepció n, Casilla 160-C, Concepción, Chile
Vilma Sanhueza
Affiliation:
Instituto de Geología Económica Aplicada, Universidad de Concepció n, Casilla 160-C, Concepción, Chile
Guillermo Alfaro
Affiliation:
Instituto de Geología Económica Aplicada, Universidad de Concepció n, Casilla 160-C, Concepción, Chile
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tuffs of the Tertiary Colbún Formation near Quinamávidain central southern Chile have been mapped and their mineralogy analyzed. The pyroclastic rocks present a maximum outcropping thickness of 120 m and are dominated by vitreous lapilli and minor lithic tuffs, the products of active volcanism nearby. About 10% of the tuffs consist of lenses of fine banded tuffs with a high leaf content that were deposited in shallow lakes during quiescent periods between periods of volcanic activity. This tuff sequence is pervasively transformed to clinoptilolite/heulandite and mordenite with variable amounts of plagioclase, minor quartz and smectite. Factors thought to have influenced this conversion to zeolites are a humid climate following deposition combined with a slightly elevated heat flow. Local hydrogeological conditions have modified the cation-hydrogen ion ratios across the study area favoring the formation of clinoptilolite/heulandite and mordenite with medium-minor smectite in the center and south, and a more abundant presence of smectite in the north of the study area.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Accefo Ltda., Estudio: Adopción de procesos extra-ctivos para zeolitas chilenas en rocas volcánicas. Fondo Nacional de Desarrollo Tecnológico (1991) Santiagode Chile Corporación de Fomento de Producción Unpublished report, 78 pp.Google Scholar
Aguirre, L. Robinson, D. Bevins, R.E. Morata, D. Vergara, M. Fonseca, E. and Carrasco, J., (2000) A low grade metamorphic model for the Miocene volcanic sequences in the Andes of Central Chile New Zealand Journal of Geology and Geophysics 43 8393 10.1080/00288306.2000.9514871.CrossRefGoogle Scholar
Cabrera, R. Formas, C. Fonseca, E. and Cortón, W., (2004) Geología y mineralogía de las zeolitas del yacimiento Lloimávida Santiagode Chile Servicio Nacional de Geología y Minería (SERNAGEOMIN) Unpublished report.Google Scholar
Chipera, S.J. Apps, J.A., Bish, D.L. and Ming, D.W., (2001) Geochemical stability of natural zeolites Natural Zeolites: Occurrence, Properties, Applications Chantilly, VA Mineralogical Society of America 117162 10.1515/9781501509117-005 Geochemical Society, Washington, D.C..CrossRefGoogle Scholar
Christidis, G.E., (1998) Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece Clays and Clay Minerals 46 379399 10.1346/CCMN.1998.0460403.CrossRefGoogle Scholar
Cochilco — Comisión Chilena del Cobre (2004) Anuario estadístico del cobre y de otros minerales 1985–2004. 146 pp. .Google Scholar
D’Gennaro, M. Cappelletti, P. Langella, A. Perrotta, A. and Scarpati, C., (2000) Genesis of zeolites in the Neapolitan Yellow Tuff. Geological, volcanological and mineralogical evidence Contributions to Mineralogy and Petrology 139 1735 10.1007/s004100050571.CrossRefGoogle Scholar
Gajardo, H. (2000) Rocas y minerales industriales de Chile. SERNAGEOMIN, Santiago de Chile, Boletin, 58, 181 pp.Google Scholar
Gottardi, G. and Galli, E., (1985) Minerals and Rocks 18: Natural Zeolites Berlin Springer-Verlag 10.1007/978-3-642-46518-5 409 pp.CrossRefGoogle Scholar
Hauser, A. (1997) Catastroy caracterización de las fuentes de aguas minerales y termales de Chile. SERNAGEOMIN, Santiago de Chile, Boletín, 5, 90 pp.Google Scholar
Kaçmaz, H. and Köktürk, U., (2006) Zeolitas and coexisting authigenic minerals in Miocene tuffs of the Alaçati (Çeşme area) Turkey Clays and Clay Minerals 54 587597 10.1346/CCMN.2006.0540505.CrossRefGoogle Scholar
Karzulovic, J. Hauser, A. and Vergara, M., (1979) Edades K/Ar en rocas volcánicas e intrusivas del área de los proyectos hidroeléctricos Colbún-Machicura-Melado, Empresa Nacional de electricidad, S.A., VII Región Congreso Geológico Chileno 2, Arica 4 J127J135.Google Scholar
Levi, B., (1969) Burial metamorphism of a Cretaceous volcanic sequence west of Santiago, Chile Contributions to Mineralogy and Petrology 24 3049 10.1007/BF00398751.CrossRefGoogle Scholar
Marfil, R. La Iglesia, A. Fernández, S. and Chong-Diaz, G., (1992) Caracterización mineralógica y geoquímica de las zeolitas asociadas a tobas, riolitas y dacitas de la región de Antofagasta, Norte de Chile Boletín de la Real Sociedad Española de Historia Natural, Sección Biológica 87 141153.Google Scholar
Moore, D.M. and Reynolds, R.C., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 378 pp.Google Scholar
Robinson, D. and Frey, M., (1999) Low-grade Metamorphism Oxford, UK Blackwell Science 313 pp.Google Scholar
Schmid, R., (1981) Descriptive nomenclature and classification of pyroclastic deposits and fragments. Recommendations of the International Union of Geological Sciences. Subcommission on the Systematics of Igneous Rocks Geology 9 4143 10.1130/0091-7613(1981)9<41:DNACOP>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Sheppard, R. Hay, R., Bish, D.L. and Ming, D.W., (2001) Formation of zeolites in open hydrologic systems Natural Zeolites: Occurrence, Properties, Applications Washington, D.C. Mineralogical Society of America and the Geochemical Society 261276 10.1515/9781501509117-010.CrossRefGoogle Scholar
Utada, M., Bish, D.L. and Ming, D.W., (2001) Zeolites in hydrothermally altered rocks Natural Zeolites: Occurrence, Properties, Applications Washington, D.C. Mineralogical Society of America and the Geochemical Society 305322 10.1515/9781501509117-012.CrossRefGoogle Scholar
Utada, M., Bish, D.L. and Ming, D.W., (2001) Zeolites in burial diagenesis and low-grade metamorphic rocks Natural Zeolites: Occurrence, Properties, Applications Washington, D.C. Mineralogical Society of America and the Geochemical Society 277304 10.1515/9781501509117-011.CrossRefGoogle Scholar
Vergara, M. (1985) Volcanismo, Oligo-Mioceno den la Pre-Cordillera Andina del río Maule (35° 40′L.S.). Pp. 564581 in: Congreso Geológico Chileno 4, Antofagasta, vol. 4.Google Scholar
Vergara, M. Levi, B. and Villarroel, R., (1993) Geothermal type alteration in a burial metamorphosed volcanic pile, central Chile Journal of Metamorphic Petrology 11 449454 10.1111/j.1525-1314.1993.tb00161.x.CrossRefGoogle Scholar
Vergara, M. Morata, D. Hickey-Vargas, R.L. López-Escobar, L. and Becar, L., (1999) Tertiary tholeiitic volcanism in the Colbún area, Linares, Precordillera, central Chile (35°35′–36°S) Revista Geológica de Chile 26 2341 10.4067/S0716-02081999000100002.CrossRefGoogle Scholar
Vila, T., (1953) Recursos minerales no-metálicos de Chile Santiago de Chile Editorial Universitaria 449 pp.Google Scholar