Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T19:54:26.615Z Has data issue: false hasContentIssue false

Ab Initio Molecular Dynamics Study of Fe-Containing Smectites

Published online by Cambridge University Press:  01 January 2024

Xiandong Liu*
Affiliation:
State Key Laboratory for Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
Evert Jan Meijer*
Affiliation:
Van’t Hoff Institute for Molecular Sciences and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
Xiancai Lu
Affiliation:
State Key Laboratory for Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
Rucheng Wang
Affiliation:
State Key Laboratory for Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to identify the influences imposed by Fe substitution, density functional theory-based Car-Parrinello molecular dynamics simulations were employed to study both oxidized and reduced Febearing smectites. The following basic properties were investigated: local structures in the clay layer, hydroxyl orientations, and the vibration dynamics of H and Si. Structural analyses indicated that the average Fe-O bond lengths are ~2.08 Å and 2.02 Å in the reduced and oxidized models, respectively, and the Fe substitutions did not affect the coordination structures of the Al-O and Si-O polyhedra. For hydroxyl orientations, Fe(III) substitution had no obvious influence but Fe(II) forces the coordinated hydroxyls to present a wide-angle distribution. Furthermore, the present work has shown that both substitutions can red-shift the hydroxyl in-plane bending mode. The analyses also revealed that Fe(III) substitution has no effect on the Si-O stretching, while Fe reduction causes a blue-shift of the out-of-plane stretching mode. The results provide quantitative constraints and clues for future research.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

References

Alimova, A. Katz, A. Steiner, N. Rudolph, E. Wei, H. Steiner, J. C. and Gottlieb, P., 2009 Bacteria-clay interaction: structural changes in smectite induced during biofilm formation Clays and Clay Minerals 57 205212 10.1346/CCMN.2009.0570207.CrossRefGoogle Scholar
Allen, M. P. and Tildesley, D. J., 1987 Computer Simulation of Liquids Clarendon Press Oxford UK.Google Scholar
Balan, E. Saitta, A.M. Mauri, F. and Calas, G., 2001 First-principles modeling of the infrared spectrum of kaolinite American Mineralogist 86 13211330 10.2138/am-2001-11-1201.CrossRefGoogle Scholar
Becke, A.D., 1988 Density-functional exchange-energy approximation with correct asymptotic behavior Physical Review A 38 30983100 10.1103/PhysRevA.38.3098.CrossRefGoogle ScholarPubMed
Bishop, J. Murad, E. and Dyar, M.D., 2002 The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy Clay Minerals 37 617628 10.1180/0009855023740064.CrossRefGoogle Scholar
Blanchard, M. Lazzeri, M. Mauri, F. and Balan, E., 2008 First-principles calculation of the infrared spectrum of hematite American Mineralogist 93 10191027 10.2138/am.2008.2813.CrossRefGoogle Scholar
Boek, E.S. and Sprik, M., 2003 Abin itio molecular dynamics study of the hydration of a sodium smectite clay Journal of Physical Chemistry B 107 32513256 10.1021/jp0262564.CrossRefGoogle Scholar
Botella, V. Timon, V. Escamilla-Roa, E. Hernandez-Languna, A. and Sainz-Diaz, C.I., 2004 Hydrogen bonding and vibrational properties of hydroxy groups in the crystal lattice of dioctahedral clay minerals by means of first principles calculations Physics and Chemistry of Minerals 31 475486 10.1007/s00269-004-0398-7.CrossRefGoogle Scholar
Bougeard, D. Smirnov, K.S. and Geidel, E., 2000 Vibrational spectra and structure of kaolinite: A computer simulation study Journal of Physical Chemistry B 104 92109217 10.1021/jp0013255.CrossRefGoogle Scholar
Boulet, P. Greenwell, H.C. Stackhouse, S. and Coveney, P.V., 2006 Recent advances in understanding the structure and reactivity of clays using electronic structure calculations Journal of Molecular Structure: THERMOCHEM 762 3348 10.1016/j.theochem.2005.10.028.CrossRefGoogle Scholar
Bridgeman, C.H. Buckingham, A.D. Skipper, N.T. and Payne, M.C., 1996 Ab-initio total energy study of uncharged 2:1 clays and their interaction with water Molecular Physics 89 879888 10.1080/00268979609482512.CrossRefGoogle Scholar
Calvet, R., 1973 Hydratation de la montmorillonite et diffusion des cations compensateurs. I. Saturation par des cations monovalents Annales Agronomiques 24 77133.Google Scholar
Car, R. and Parrinello, M., 1985 Unified approach for molecular-dynamics and density-functional theory Physical Review Letters 55 24712474 10.1103/PhysRevLett.55.2471.CrossRefGoogle ScholarPubMed
Cervini-Silva, J. Wu, J. Stucki, J.W. and Larson, R.A., 2000 Adsorption kinetics of pentachloroethane by iron-bearing smectites Clays and Clay Minerals 48 132138 10.1346/CCMN.2000.0480116.CrossRefGoogle Scholar
Churakov, S.V., 2006 Abin itio study of sorption on pyrophyllite: structure and acidity of the edge sites Journal of Physical Chemistry B 110 41354146 10.1021/jp053874m.CrossRefGoogle Scholar
Cygan, R.T. and Kubicki, J.D. 2001(editors) () Molecular Modeling Theory: Applications in the Geosciences. Volume 42, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia, and the Geochemical Society, St. Louis, Missouri.CrossRefGoogle Scholar
Denecke, M., 2006 Actinide speciation using X-ray absorption fine structure spectroscopy Coordination Chemical Reviews 250 730754 10.1016/j.ccr.2005.09.004.CrossRefGoogle Scholar
Farmer, V.C. and Farmer, V.C., 1974 The layer silicates The Infrared Spectra Of Minerals London Mineralogical Society 331363 10.1180/mono-4.15.CrossRefGoogle Scholar
Favre, F. Stucki, J.W. and Boivin, P., 2006 Redox properties of structural Fe in ferruginous smectite A discussion of the standard potential and its environmental implications. Clays and Clay Minerals 54 466472.Google Scholar
Fialips, C.I. Huo, D.F. Yan, L.B. Wu, J. and Stucki, J.W., 2002 Effect of Fe oxidation state on the IR spectra of Garfield nontronite American Mineralogist 87 630641 10.2138/am-2002-5-605.CrossRefGoogle Scholar
Gaigeot, M.P. and Sprik, M., 2003 Abin itio molecular dynamics computation of the infrared spectrum of aqueous uracil Journal of Physical Chemistry B 107 1034410358 10.1021/jp034788u.CrossRefGoogle Scholar
Gates, W.P., 2008 Cation mass-valence sum (CM-VS) approach to assigning OH-bending bands in dioctahedral smectites Clays and Clay Minerals 56 1022 10.1346/CCMN.2008.0560102.CrossRefGoogle Scholar
Goodman, B.A. Russell, J.D. Fraser, A.R. and Woodhams, F.W.D., 1976 Mössbauer and IR spectroscopic study of structure of nontronite Clays and Clay Minerals 24 5359 10.1346/CCMN.1976.0240201.CrossRefGoogle Scholar
Hernandez-Laguna, A. Escamilla-Roa, E. Timon, V. Dove, M.T. and Sainz-Diaz, C.I., 2006 DFT study of the cation arrangements in the octahedral and tetrahedral sheets of dioctahedral 2:1 phyllosilicates Physics and Chemistry of Minerals 33 655666 10.1007/s00269-006-0120-z.CrossRefGoogle Scholar
Jaisi, D.P. Dong, H.L. and Morton, J.P., 2008a Partitioning of Fe(II) in reduced nontronite (NAu-2) to reactive sites: Reactivity in terms of Tc(VII) reduction Clays and Clay Minerals 56 175189 10.1346/CCMN.2008.0560204.CrossRefGoogle Scholar
Jaisi, D.P. Ji, S.S. Dong, H.L. Blake, R.E. Eberl, D.D. and Kim, J.W., 2008b Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River delta plain, Louisiana, USA Clays and Clay Minerals 56 416428 10.1346/CCMN.2008.0560403.CrossRefGoogle Scholar
Kleinman, L. and Bylander, D.M., 1982 Efficacious form for model pseudopotentials Physical Review Letters 48 14251428 10.1103/PhysRevLett.48.1425.CrossRefGoogle Scholar
Kubicki, J.D. and Bleam, W.F. (2003) Molecular Modeling of Clays and Mineral Surfaces. CMS Workshop Lectures volume 12, The Clay Minerals Society, Aurora, Colorado, USA.Google Scholar
Larentzos, J.P. Greathouse, J.A. and Cygan, R.T., 2007 An abinitio and classical molecular dynamics investigation of the structural and vibrational properties of talc and pyrophyllite Journal of Physical Chemistry C 111 1275212759 10.1021/jp072959f.CrossRefGoogle Scholar
Lee, C. Yang, W. and Parr, R.G., 1988 Development of the colle-salvetti correlation-energy formula into a functional of the electron-density Physical Reviews B 37 785789 10.1103/PhysRevB.37.785.CrossRefGoogle ScholarPubMed
Liu, X.D. Lu, X.C. Wang, R.C. Zhou, H.Q. and Xu, S.J., 2008 Surface complexes of acetate on edge surfaces of 2:1 type phyllosilicate: Insights from density functional theory calculation Geochimica et Cosmochimica Acta 72 58965907 10.1016/j.gca.2008.09.026.CrossRefGoogle Scholar
Manceau, A. Drits, V.A. Lanson, B. Chateigner, D. Wu, J. Huo, D. Gates, W.P. and Stucki, J.W., 2000 Oxidationreduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite American Mineralogist 85 153172 10.2138/am-2000-0115.CrossRefGoogle Scholar
Murad, E. Fischer, W.R., Stucki, J.W. Goodman, B.A. and Schwertmann, U., 1988 Geobiochemical cycle of iron Iron in Soils and Clay Minerals Dordrecht, The Netherlands D. Reidel 118.Google Scholar
Peretyazhko, T. Zachara, J.M. Heald, S.M. Jeon, B.H. Kukkadapu, R.K. Liu, C. Moore, D. and Resch, C.T., 2008 Heterogeneous reduction of Tc(VII) by Fe(II) at the solid-water interface Geochimica et Cosmochimica Acta 72 15211539 10.1016/j.gca.2008.01.004.CrossRefGoogle Scholar
Petit, S., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Fourier transform infrared spectroscopy Handbook of Clay Science Amsterdam Elsevier 909918 10.1016/S1572-4352(05)01032-9.CrossRefGoogle Scholar
Refson, K. Park, S.H. and Sposito, G., 2003 Abi nitio computational crystallography of 2:1 clay minerals: 1. Pyrophyllite-1Tc Journal ofPhysical Chemistry B 107 1337613383 10.1021/jp0347670.CrossRefGoogle Scholar
Rosso, K.M. and Ilton, E.S., 2003 Charge transport in micas: The kinetics of Fe-II/III electron transfer in the octahedral sheet Journal of Chemical Physics 119 92079218 10.1063/1.1612912.CrossRefGoogle Scholar
Sainz-Diaz, C.I. Escamilla-Roa, E. and Hernandez-Laguna, A., 2004 Pyrophyllite dehydroxylation process by first principles calculations American Mineralogist 89 10921100 10.2138/am-2004-0722.CrossRefGoogle Scholar
Sainz-Diaz, C.I. Timon, V. Botella, V. Artacho, E. and Hernandez-Laguna, A., 2002 Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: Effect of octahedral cation distributions in pyrophyllite, illite, and smectite American Mineralogist 87 958965 10.2138/am-2002-0719.CrossRefGoogle Scholar
Sprik, M. Hutter, J. and Parrinello, M., 1996 Abi nitio molecular dynamics simulation of liquid water: Comparison three gradient-corrected density functionals Journal of Chemical Physics 105 11421152 10.1063/1.471957.CrossRefGoogle Scholar
Stackhouse, S. Coveney, P.V. and Sandre, E., 2001 Plane-wave density functional theoretic study of formation of claypolymer nanocomposite materials by self-catalyzed in situ intercalative polymerization Journal oft he American Chemical Society 123 1176411774 10.1021/ja015808d.CrossRefGoogle ScholarPubMed
Stucki, J.W., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Properties and behavior of iron in clay minerals Handbook of Clay Science Amsterdam Elsevier 423476 10.1016/S1572-4352(05)01013-5.CrossRefGoogle Scholar
Stucki, J.W. Lee, K. Zhang, L.Z. and Larson, R.A., 2002 Effects of iron oxidation state on the surface and structural properties of smectites Pure and Applied Chemistry 74 21452158 10.1351/pac200274112145.CrossRefGoogle Scholar
Teppen, B.J. Yu, C.H. Newton, S.Q. Miller, D.M. and Schafer, L., 2002 Quantum molecular dynamics simulations regarding the dechlorination of trichloro ethene in the interlayer space of the 2:1 clay mineral nontronite Journal of Physical Chemistry A 106 54985503 10.1021/jp0132127.CrossRefGoogle Scholar
Troullier, N. and Martins, J.L., 1991 Efficient pseudopotentials for plane-wave calculations Physical Reviews B 43 19932006 10.1103/PhysRevB.43.1993.CrossRefGoogle ScholarPubMed
Viani, A. Gaultieri, A.F. and Artioli, G., 2002 The nature of disorder in montmorillonite by simulation of X-ray powder patterns American Mineralogist 87 966975 10.2138/am-2002-0720.CrossRefGoogle Scholar
Wang, J. Kalinichev, A.G. Amonette, J. and Kirkpatrick, R.J., 2003 Interlayer structure and dynamics of Cl-bearing hydrotalcite: far infrared spectroscopy and molecular dynamics modeling American Mineralogist 88 398409 10.2138/am-2003-2-316.CrossRefGoogle Scholar
Yan, L. and Stucki, J.W., 1999 Effects of structural Fe oxidation state on the coupling of interlayer water and structural Si-O stretching vibrations in montmorillonite Langmuir 15 46484657 10.1021/la9809022.CrossRefGoogle Scholar