Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T13:03:23.480Z Has data issue: false hasContentIssue false

Weathering of biotite to vermiculite in Quaternary lahars from Monti Ernici, Central Italy

Published online by Cambridge University Press:  09 July 2018

A. Pozzuoli
Affiliation:
Dipartimento di Geofisica e Vulcanologia, Universitá degli Studi di napoli Federico II, Largo S. Marcellino 10, 80138 Napoli, Italia
E. Vila
Affiliation:
Instituto de Ciencia de Materiales, Sede D, CSIC, Serrano 113, 28006 Madrid, España
E. Franco
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Napoli Federico II, Largo S. Marcellino 10, 80138 Napoli, Italia
A. Ruiz-Amil
Affiliation:
Instituto de Ciencia de Materiales, Sede D, CSIC, Serrano 113, 28006 Madrid, España
C. De La Calle
Affiliation:
Laboratoire de Réactivité de Surface et Structure, URA 1106—CNRS, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 5, France

Abstract

The weathering of biotite in Quaternary lahars from Monti Ernici (Central Italy) via interstratification stages has been studied by X-ray diffraction of both the interstratified minerals and the initial (biotite) and final (vermiculite) end-members. The structure of the biotite and vermiculite is described by means of monodimensional Fourier series. The interstratified phases have been studied using the INTER program which permits an analysis of two interstratified components by Fourier transform methods. It is shown that in the alteration range for biotite to vermiculite even small samples have different spatial concentrations of biotite, vermiculite and an intermediate biotite-vermiculite-type phase. Hydrobiotite and a rare biotite-hydrobiotite with a tendency to regularity have also been documented. Chemically, the process involves considerable oxidation of Fe2+ and the removal of most of the elements, corresponding to a 34% loss in matter. The sequence of the element losses is: K+ > Fe2+ > F > Mn2+ > Si4+ > Mg2+ > Al3+ > Ti4+. There are also some gains in the order: H+ > Ca2+ > Fe3+ > Na+.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accordi, B., Angelucci, A. & Sirna, G. (1967) Note illustrative della Carta Geologica dltalia allascalla 1:100-000. Fogli 159 (Frosinone) e 160 (Cassino). Servizio Geologico dltalia, Roma.Google Scholar
Angelucci A, (1967) Rapporti ta tettonica pleistocenica e vulcanismo minore intrappenninico nel Lazio centro- meridionale. Atti Acc. Gioenia Sc. Nat. Catania, Series 6 18, 7384.Google Scholar
Angelucci, A., Brotzu, P., Civitelli, G., Morbidelli, L. & Traversa, G. (1974) II vulcanismo pleistocenico della media Valle Latina (Lazio)—Caratteristiche petrografiche e geologiche dei principali affioramenti lavici. Geologica Romana 13, 83123.Google Scholar
Barth, T.W. (1948) Oxygen in rocks: A basis for petrographic calculations. J. Geol. 56, 5061.Google Scholar
Basilone, P. & Civetta, L. (1975) Datazione K/Ar dell'attivita vulcanica dei Monti Ernici (Latina). Rend. Soc. It. Min. Petr. 31, 175179.Google Scholar
Calle, C. de la, Suquet, H. & Pons, C.H. (1988) Stacking order in a 14°30 A Mg-vermiculite. Clays Clay Miner. 36, 481490.Google Scholar
De Gennaro, M. & Franco, H. (1971) Studio preliminare sulle vulcaniti dei Monti Ernici e della Media Valle Latina. Rend. Acc. Sc. Fis. Mat., Soc. Naz. Sc. Lett. Arti in Napoli, Serie 4 XXXVII, 215242. Google Scholar
De Gennaro, M. & Franco, E. (1975) Su alcuni casi di alterazione della biotite in vermiculite. Rend. Acc. Sc. Fis.Mat, Soc. Naz. Sc. Lett. Arti in Napoli, Serie 4 XLII, 118.Google Scholar
Jakob, J. (1944) Guia Para el Andlisis Quimico de las Rocas. CSIC, Madrid.Google Scholar
Linares, J., Caballero, E., Reyes, H. & Huertas, F. (1987) Trace element mobility in bentonite formation. Pp. 233250 in: The Practical Applications of Trace Elements Isotopes to Environmental Biogeochemistry and Mineral Resources Evaluation (Hurst, R.W., Davis, T.E. & Augustithis, S.S., editors). Theophrastus Publ., Athens.Google Scholar
MacEwan, D.M.C. (1958) Fourier transform methods for studying X-ray scattering from lamellae systems. II. The calculation of X-ray diffraction effects for various types of interstratification. Kolloidzeitschrift 156, 6167.Google Scholar
MacEwan, D.M.C., Ruiz-Amil, A. & Brown, G. (1961) Interstratified clay minerals. Pp. 393445 in: The X-ray Identification and Crystal Structures of Clay Minerals(Brown, G., editor). Mineralogical Society, London.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1128 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Mineralogical Society, London.Google Scholar
Ruiz-Amil, A., Garcia, R.A. & MacEwan, D.M.C. (1967) Diffraction Curves for the Analysis of Interstratified Structures. Voltuma Press, Edinburgh.Google Scholar
Scherillo, A. (1963) Le Piroclastiti. Pp. 419-548 in: La Regione Vulcanica dei Colli Albani. CNR, Roma.Google Scholar
Vila, E., Ruiz-Amil, A. & Martin de Vidales, J.L. (1988) Computer Program for X-ray Powder Diffraction Analysis. Internal Report CSIC, Madrid.Google Scholar
Vila, E. & Ruiz-Amil, A. (1988) Computer program for analysing interstratified structures by Fourier transform methods. Powder Diffraction 3, 711.Google Scholar