Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T23:49:27.909Z Has data issue: false hasContentIssue false

Water sorption on Ca-saturated clays: I. Multilayer sorption and microporosity in some illites

Published online by Cambridge University Press:  09 July 2018

Kathy Branson
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts. AL5 2JQ, UK
A. C. D. Newman
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts. AL5 2JQ, UK

Abstract

Measurements of water desorption and sorption on four Ca-saturated illitic clays show that the shapes of the isotherms are very similar to those for other oxide surfaces, indicating that the formation of water multilayers is quantitatively similar. This enables graphs of multilayer thickness against mass sorbed to be drawn and used to assess microporosity. Hysteresis occurs and this is attributed to loss of external surface as drying brings platy particles in close face-to-face contact. Mixed-layer mica-smectites, however, exhibit no microporosity by this test and behave as if all surfaces are freely accessible to multilayer formation. The reason for this is not at present understood.

Resume

Resume

Des mesures d'adsorption et de désorption d'eau sur 4 argiles de type illite saturée en Ca montrent que les formes des isothermes sont très semblables à celles rencontrées pour d'autres surfaces d'oxyde; la formation des multicouches d'eau est donc quantitativement semblable. On peut ainsi représenter l'épaisseur de la multicouche par rapport à la quantité adsorbée et utiliser ces courbes pour déterminer la microporosité. On constate une hystérèse que l'on attribue à la perte de surface externe lors du séchage qui favorise le contact des particules planes. Par contre les interstratifiés mica-smectites ne présentent aucune microporosité au moyen de ce test et se comportent comme si toutes les surfaces éaient librement accessibles à la formation de multicouches. Aucune explication ne peut être avancée.

Kurzreferat

Kurzreferat

Die Messungen der Wasser-Desorption und -Sorption an vier Cagesättigten illitischen Tonen zeigen, daß die Form der Isothermen sehr ähnlich der anderer oxidischer Oberflächen ist, die Bildung der Wasser-Mehrfachschichten also quantitativ ähnlich verläuft. Das erlaubt es, eine Beziehung zwischen der Schichtdicke und der Masse des sorbierten Wassers aufzustellen und zur Abschätzung der Mikroporosität zu benutzen. Bei diesem Sorptionsvorgang tritt Hysteresis auf, da beim Trocknen plättchenförmige Partikel flach aneinander gelagert werden und sich daher die äußere Oberfläche vermindert. Wechselgelagerte Glimmer-Smectite zeigen jedoch bei diesem Verfahren keine Mikroporosität und verhalten sich so, als ob alle Oberflächen vollständig frei für die Mehrschiehtenadsorption zur Verfügung stünden. Ein Grund hierfür konnte nicht gefunden werden.

Resumen

Resumen

Las medidas de adsorción y desorción de agua en cuatro arcillas iliticas saturadas con calcio indiean que la forma de las isotermas es muy similare a las obtenidas para otros óxidos indicando que la formación de multicapas de agua es cuantitativamente similar. Este hecho permite representar gráficamente el espesor de la multicapa en funcion de la masa de agua adsorbida y a partir de esta gráfica calcular la microporosidad. El proceso de histeresis que se observa se atribuye a la pérdida de superficie externa como consecuencia del seeado, lo que provoca el apilamiento de las particulas. Los minerales interestratificados tipo micaesmectita, sin embargo, no presentan microporosidad según este test, comportándose como si todas las superficies fueran accesibles libremente a la formación de la multicapa. No se tiene hasta ahora una explicación para este comportamiento.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avery, B.W. & Bullock, P. (1977) Mineralogy of clayey soils in relation to soil classification. Soil Survey Technical Monograph 10, Harpenden, UK.Google Scholar
Aylmore, L.A.G. & Quirk, J.P. (1962) The structural status of clay systems. Clays Clay Miner. 9, 104130.Google Scholar
Gaudette, H.E., Eades, J.L. & Grim, R.E. (1966) The nature of illite. Clays Clay Miner. 13, 3348.Google Scholar
Greenland, D.J. & Mott, C.J.B. (1978) Surfaces of soil particles. Pp. 321353 in: The Chemistry of Soil Constituents (Greenland, D. J. & Hayes, M. H. B., editors). J. Wiley & Sons, Chichester.Google Scholar
Greenspan, L. (1977) Humidity fixed points of binary aqueous solutions. J. National Bureau of Standards 81A, 8996.Google Scholar
Gregg, S.J. & Sing, K.S.W. (1967) Adsorption, Surface Area and Porosity. Academic Press, London.CrossRefGoogle Scholar
Hagymassy, J., Brunauer, S. & Mikhail, R.S. (1969) Pore structure analysis by water vapour adsorption. 1. t-curves for water vapour. J. Colloid Interface Sci. 29, 485491.Google Scholar
Jones, A.A. & Greenland, D.J. (1980) Quantitative determination of the interlamellar volume of an interstratified mica-smectite clay. Clay Miner. 15, 175191.Google Scholar
Jovanovic, D.S. (1969) Physical adsorption of gases. II. Practical application of derived isotherms for monolayer and multilayer adsorption. Kolloid-Zeitschrift 235, 12141225.Google Scholar
Jurinak, J.J. (1963) Multilayer adsorption of water by kaolinite. Soil Sci. Soc. Am. Proc. 27, 269272.Google Scholar
Keenan, A.G., Mooney, R.W. & Wood, L.A. (1951) The relation between exchangeable ions and water adsorbed on kaolinite. J. phys. coll. Chem. 55, 14621474.Google Scholar
Lawrence, G.P., Payne, D. & Greenland, D.J. (1979) Pore size distribution in critical point and freeze dried aggregates from clay subsoils. J. Soil Sci. 30, 499516.CrossRefGoogle Scholar
Lecloux, A. & Pirard, J.P. (1979) The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids. J. Colloid Interface Sci. 70, 265281.Google Scholar
Lippens, B.C. & de Boer, J.H. (1965) Studies on pore systems in catalysts. Pt. V. The t-method. J. Catalysis 4, 319323.Google Scholar
MacEwan, D.M.C. & Wilson, M.J. (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197248 in: Crystal Structures of Clay Minerals and their X-ray Identification ( Brindley, G. W & Brown, G., editors). Mineralogical Society, London.Google Scholar
Mankin, C.J. & Dodd, C.G. (1963) Proposed reference illite from the Ouachita Mountains of Southern Oklahoma. Clays Clay Miner. 10, 372379.Google Scholar
Mason, G. (1982) The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption-desorption isotherms. J. Colloid Interface Sci. 88, 3646.CrossRefGoogle Scholar
Mikhail, R.S., Guindy, N.M. & Hanafi, S. (1979) Vapor adsorption on expanding and non-expanding clay minerals. J, Colloid Interface Sci. 70, 282292.Google Scholar
Mooney, R.W., Keenan, A.C. & Wood, L.A. (1952) Adsorption of water by montmorillonite. J. Am. Chem. Soc. 74, 13671374.Google Scholar
Newman, A.C.D. (1983) The specific surface of soils determined by water sorption. J. Soil Sci. 34, 2332.Google Scholar
Newman, A.C.D. & Brown, G. (1966) Chemical changes during the alteration of micas. Clay Miner. 6, 297310.Google Scholar
Orchiston, H.D. (1955) Adsorption of water vapour. III. Homoionic montmorillonites at 25°C. Soil Sci. 79, 7178.Google Scholar
Ormerod, E.C. & Newman, A.C.D. (1983) Water sorption on Ca-saturated clays: I. Internal and external surfaces of montmorillonite. Clay Miner. 18, 289299.Google Scholar
Pyman, M.A.F. & Posner, A.M. (1978) The surface areas of amorphous mixed oxides and their relation to potentiometric titration. J. Colloid Interface Sci. 66, 8594.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Robinson, R.A. & Stokes, R.H. (1965) Electrolyte Solutions. Butterworths, London.Google Scholar
Sing, K.S.W. (1970) Utilisation of adsorption data in the BET region. Pp. 2535 in: Surface Area Determination (Everett, D. H. & Ottewill, R. G., editors). Butterworths, London.Google Scholar
van Olphen, H. (1975) Water in soils. Pp. 497527 in: Soil Components. Volume 2, Inorganic Components (Gieseking, J. E., editor) Springer-Verlag. New York.Google Scholar
Wade, W.H. (1964) The surface area of water preadsorbed on powdered substrates. J. Phys. Chem. 68, 10291034.Google Scholar
Weir, A.H. & Rayner, J.H. (1974) An interstratified illite-smectite from Denchworth series soil in weathered Oxford clay. Clay Miner. 10, 173187.CrossRefGoogle Scholar