Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T13:17:32.011Z Has data issue: false hasContentIssue false

Vermiculite, with hydroxy-aluminium interlayer, and kaolinite formation in a subtropical sandy soil from south Brazil

Published online by Cambridge University Press:  09 July 2018

E. C. Bortoluzzi
Affiliation:
Faculdade de Agronomia e Medicina Veterinária, Fundação Universidade de Passo Fundo (FAMV-FUPF), 611, 99051-000 Passo Fundo, Rio Grande do Sul, Brazil
B. Velde
Affiliation:
Département de Géologie, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris – Cedex 05, France
M. Pernes
Affiliation:
Institut National de la Recherche Agronomique (INRA), Unité PESSAC, Route de Saint-Cyr, 78026 Versailles Cedex, France
J. C. Dur
Affiliation:
Institut National de la Recherche Agronomique (INRA), Unité PESSAC, Route de Saint-Cyr, 78026 Versailles Cedex, France
D. Tessier*
Affiliation:
Institut National de la Recherche Agronomique (INRA), Unité PESSAC, Route de Saint-Cyr, 78026 Versailles Cedex, France
*

Abstract

The purpose of this study was to investigate the clay mineral phases in a Rhodic Acrisol soil and to discuss their evolution in subtropical conditions. Prairie and forest soil profiles were sampled and clay fractions of the parent material and soil horizons analysed by X-ray diffraction (XRD) at the Federal University of Santa Maria, Rio Grande do Sul-Brazil. The XRD results show the presence of interstratified kaolinite-smectite and illite-smectite as well as illite in the parent material. These minerals were also found in the soil samples but with two new phases: hydroxy-aluminium interlayered vermiculite (HIV), which showed incomplete collapse with treatment at 550ºC, and a newly formed kaolinite (d = 7.17 Å). Under a subtropical climate and a sandy lithology, HIV and kaolinite appear to be a result of a specific pedogenic clay formation, related to the natural vegetation. Originally, under the prairie area, the intensity of the weathering processes was weak (within 2:1 clay minerals), as only small quantities of kaolinite and Fe oxides, and no evidence of gibbsite, were found.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AFNOR (1996) Qualitédes sols: recueil des normes françaises. Afnor, 3rd Edition, Paris la Défense, France, 533 pp.Google Scholar
Bhattacharyya, T., Pal, D.K. & Srivastava, P. (2000) Formation of gibbsite in the presence of 2:1 minerals: an example from Ultisols of northeast India. Clay Minerals, 35, 827840.CrossRefGoogle Scholar
Bortoluzzi, E. (2003) Nature des constituants, propriétés chimiques et physiques des sols. Modélisation des charges superficielles dans des sols sableux au sud du Brésil. PhD thesis, INAPG, INRA, Paris, France.Google Scholar
Bortoluzzi, E.C., Rheinheimer, D.S., Kaminski, J., Gatiboni, L.C. & Tessier, D. (2005) Potassium fertilization affecting the mineralogy of a Rhodic Acrisol in Rio Grande do Sul (Brazil). Brazilian Journal of Soil Science, 28, 327335.Google Scholar
Bradford, J.M. & Blanchar, R.W. (1999) Mineralogy and water quality parameters in rill erosion of clay-sand mixtures. Soil Science Society of America Journal, 63, 13001307.CrossRefGoogle Scholar
Carter, D.L., Heiman, R. & Gonzales, C.L. (1965) Ethylene glycol Monoethyl ether for determining surface area of silicate minerals. Soil Science, 100, 356360.Google Scholar
Churchman, G.J., Whitton, J.S., Claridge, G.G.C. & Theng, B.K.G. (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals, 32, 241248.Google Scholar
Ciesielski, H. & Sterckeman, T. (1997) Determination of exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie, 17, 17.Google Scholar
Hughes, R.E., Moore, D.M. & Glass, H.D. (1994) Qualitative and quantitative analysis of clay minerals in soils. Pp. 330359 in: Quantitative Methods in Soil Mineralogy (Baterls, Jon M., editor), Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Inoue, A., Bouchet, A., Velde, B. & Meunier, A. (1989) Convenient technique for estimating layer percentage in randomly interstratified illite/smectite minerals. Clays and Clay Minerals, 37, 227234.Google Scholar
Kampf, N. & Schwertmann, U. (1983) Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma, 29, 2739.Google Scholar
Kampf, N., Azevedo, A.C. & da Costa, M.I. (1995) Estrutura básica de argilominerais 2:1 com hidroxi- Al entrecamadas em latossolo bruno do Rio Grande do Sul. Brazilian Journal of Soil Science, 19, 185190.Google Scholar
Ker, J.C. & Resende, M. (1990) Caracterização quimica e mineralógica de solos brunos subtropicais do Brasil. Brazilian Journal of Soil Science, 14, 215225.Google Scholar
Lanson, B. (1993) DECOMPXR, X-ray decomposition program. ERM (Sarl.) Poitiers, France.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays and Clay Minerals, 45, 132146.Google Scholar
Lanson, B. & Besson, G. (1992) Characterization of the end of smectite-to-illite transformation: decomposition of X-ray patterns. Clays and Clay Minerals, 40, 4052.CrossRefGoogle Scholar
MacEwan, D.M.C. & Wilson, M.J. (1980) Interlayer and intercalation complexes of Clay minerals. Pp. 197242 in: Crystal Structure of Clay Minerals and their X-ray Identification (Brindley, G.W. and Brown, G., editors). Mineralogical Society, London.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron removal from soils and clays by a dithionite citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 312327.Google Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press Inc, USA, 100200 pp.Google Scholar
Pernes-Debuyser, A., Pernes, M., Velde, B. & Tessier, D. (2003) Soil mineralogy evolution in the INRA 42 Plots experiment (Versailles, France). Clays and Clay Minerals, 51, 578585.Google Scholar
Reynolds, R.C. (1985) NEWMOD a Computer Program for the Calculation of One-dimensional Diffraction Patterns of Mixed-Layered Clays. Hanover, NH03755, USA.Google Scholar
Righi, D., Terribile, F. & Petit, S. (1999) Pedogenic formation of kaolinite-smectite mixed layers in a soil toposequence developed from a basaltic parent material in Sardinia (Italy). Clays and Clay Minerals, 47, 505514.Google Scholar
Robert, M. & Tessier, D. (1974) Méthode de préparation des argiles de sols pour les études minéralogiques. Annales Agronomiques, 25, 859882.Google Scholar
Rousseau, M., Di Pietro, L., Angulo-Jamarillo, R., Tessier, D. & Cabibel, B. (2004) Preferential transport of soil colloidal particles: physico-chemical effects on particle mobilization. Vadoze Zone Journal, 3, 247261.Google Scholar
Shepherd, T.G., Saggar, S., Newman, R.H., Ross, C.W. & Dando, J.L. (2001) Tillage-induced changes to soil structure and organic carbon fractions in New Zealand soils. Australian Journal of Soil Research, 39, 465489.Google Scholar
Silvério da Silva, J.L. (1997) Estudo dos processos de silicificação e calcificação em Rochas Sedimentares Mesozóicas do Rio Grande do Sul, Brasil. PhD thesis, University Federal do Rio Grande do Sul, Porto Alegre, Brazil.Google Scholar
Tessier, D. (1984) Etude expérimentale de l’organisation des matériaux argileux. Hydratation, gonflement et structuration au cours de la dessiccation et de la ré- humectation. PhD thesis, University of Paris, France.Google Scholar