Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T21:28:23.529Z Has data issue: false hasContentIssue false

Synthesis of zeolites from thermally activated kaolinite. Some observations on nucleation and growth

Published online by Cambridge University Press:  09 July 2018

M. Murat
Affiliation:
Institut National des Sciences Appliquées (INSA) de Lyon, Groupe Métallurgie Physique et Physique des Matériaux (UA CNRS N° 341), Laboratoire de Chimie-Physique Appliquée et Environnement, and Laboratoire de Thermochimie Minérale, 20 Av. Albert Einstein, 69621 Villeurbanne, France
A. Amokrane
Affiliation:
Institut National des Sciences Appliquées (INSA) de Lyon, Groupe Métallurgie Physique et Physique des Matériaux (UA CNRS N° 341), Laboratoire de Chimie-Physique Appliquée et Environnement, and Laboratoire de Thermochimie Minérale, 20 Av. Albert Einstein, 69621 Villeurbanne, France
J. P. Bastide
Affiliation:
Institut National des Sciences Appliquées (INSA) de Lyon, Groupe Métallurgie Physique et Physique des Matériaux (UA CNRS N° 341), Laboratoire de Chimie-Physique Appliquée et Environnement, and Laboratoire de Thermochimie Minérale, 20 Av. Albert Einstein, 69621 Villeurbanne, France
L. Montanaro
Affiliation:
Politecnico di Torino, Dipartimento dei Materiali ed Ingegneria Chimica, Corso Duca degli Abruzzi 24, 10129 Torino, Italia

Abstract

Depending on the preparation temperature and the origin of the raw mineral, the products obtained by thermal activation of kaolinite lead, by hydrothermal treatment with sodium hydroxide at 102°C, either to zeolite 4A, or to cubic zeolite P, or to a mixture of cubic and tetragonal zeolite P. The change in the type of zeolite obtained was explained on the basis of a radical change of the zeolite nucleation process due to either the presence of soluble potassium or high silica content resulting from dehydration of muscovite (an impurity in the raw-kaolinite), or from “segregation” associated with the first step of the metakaolinite to mullite transformation. These phenomena occur at a lower calcination temperature with poorly-crystallized kaolinite, and iron in such a sample promotes a sensitive decrease in the formation rate of zeolite crystals. Such results could be used to characterize the crystallinity of kaolinites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, R. & Barker, R.M. (1970) Hydrothermal chemistry of silicates. Part XIV. Zeolite crystallisation in presence of mixed bases. J. Chem. Soc., A, 14701478.Google Scholar
Ball, W.J., Dwyer, J., Garforth, A.A. & Smith, W.J. (1986) The synthesis and characterisation of iron silicate molecular sieves. Proc. 7th Int. Zeolite Conf., 137144.Google Scholar
Bachiorrini, A. & Murat, M. (1986) Spectroscopie d'absorption infrarouge appliquee a la caracterisation de l'etat d'amorphisation de la metakaolinite. C.R. Acad. Sci., 303, Ser. II, 17831786.Google Scholar
Barrer, R.M., Baynham, J.W., Bultitude, F.W. & Meier, W.M. (1959) Hydrothermal chemistry of silicates. Part VIII. Low-temperature growth of aluminosilicates, and some gallium and germanium analogues. J. Chem. Soc.I, 195208.Google Scholar
Breck, D.W. (1974) Zeolite Molecular Sieves. Structure, Chemistry and Uses,pp. 313-320 and pp. 731738. John Wiley & Sons, New York.Google Scholar
Cases, J.M., Lietard, O., Yvon, J. & Delon, J.F. (1982) Etude des proprietescristallochimiques, morphologiques et superficielles des kaolinites desordonnees. Bull. Min., 105, 439–445.Google Scholar
Chakraborty, A.K. & Ghosh, D.K. (1989) Comment on spinel phase formation during 980°C exothermic reaction in the kaolinite-to-mullite reaction series. J. Am. Ceram. Soc., 72, 1569–1570.Google Scholar
Eberhart, J.P. (1963) Etude des transformations du mica muscovite par chauffage entre 700 et 1200°C. Bull. Soc. Fr. Min. Cristallogr., 86, 213–251.Google Scholar
Flank, W.H. (1970) U.S. Patent No, 3, 515, 511.Google Scholar
Herbillon, A .J., Mestdagh, M.M., VielvoyeL. & DerouaneE.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner., 11, 201–220.Google Scholar
Howell, P.H., Acara, N.A. & Towne, M.K. Jr. (1965) Production of molecular sieve adsorbents from kaolin minerals. Brit. Patent No., 980, 891.Google Scholar
Jantzen, C.M. (1990) Formation of zeolite during caustic dissolution of fibreglass: implications for studies of the kaolinite-to-mullite transformation. J. Am. Ceram. Soc., 73, 3708–3711.Google Scholar
Lemaitre, J., Leonard, A.J. & Delmon, B. (1975) The sequence of phases in the 900-1050°C transformation of metakaolinite. Proc. Int. Clay Conf.y Mexico City,, 545552. Google Scholar
Lietard, O. (1977) Contribution a Vetude desproprietes physicochimiques, cristallographiques et morphologiques des kaolins.These de Doctorat es-Sciences, Univ. Nancy, France.Google Scholar
Mange, M., Mentzen, B. & Murat, M. (1976) Procede pour la preparation de zeolites synthetiques. Brevet FrangaisNo. 2.359.073.Google Scholar
Milton, R.M. (1956) Procede de fabrication de matieres absorbantes synthetiques. Brevet FrangaisNo 1.117.776.Google Scholar
Murat, M. & Bachiorrini, A. (1982) Correlation entre Tetat d'amorphisation et Thydraulicite du metakaolin. Bull. Min., 105, 543–555.Google Scholar
Murat, M. & Driouche, M. (1988) Conductimetric investigations of the dissolution of metakaolinite in dilute hydrofluoric acid. Structural implications. Clay Miner., 23, 55–67.Google Scholar
Murat, M., Ambroise, J. & Pera, J. (1986) Les differents procedes d^ctivation des mineraux argileux permettant d'elaborer des Hants pouzzolaniques a resistance optimale. Proc. 8th Congr. Chemistry of Cement, Rio de Janeiro,IV, 53-59.Google Scholar
Murat, M., Amokrane, A. & Bastide, J.P. (1990) Synthese des zeolites a partir des produits d^ctivation thermique de la kaolinite. Role des caracteristiques structurales et mineralogiques du mineral de depart. C.R. Acad. Sci., 310, Ser. II, 1725-1730.Google Scholar
Murat, M., Mathurin, D. & Chbihi elM. (1987) Enthalpiede dissolution de differentes kaolinites et metakaolinites dans I'acide fluorhydrique. Influence des caracteristiques cristallochimiques. Thermochim. Acta,, 122, 79–85.CrossRefGoogle Scholar
Murat, M., Amokrane, A., Montanaro, L. & Negro, A. (1991) Some experimental observations on the first step of the "Metakaolinite → Mullite" transformation. 3rd Europ. Interregion. Colloq. Ceramics, Lyon,, 28-29.Google Scholar
Murat, M., Mathurin, D., Driouche, M., Bachiorrini, A. & Montanaro, L. (1989) Investigations on some structural and physico chemical properties of metakaolinite. Abstracts 9th Int. Clay Conf., Strasbourg,, 272.Google Scholar
Thomas, J.L. (1970) Influence de traitements thermiques prealables sur les proprietes d'absorption des tamis moleculaires de type 4A et5A, etsur revolution structurale et texturale des tamis moleculaires de type 4A.These de Doctorat es-Sciences Physiques, Univ. Lyon, France.Google Scholar
Zhdanov, S.P. (1971) Some problems of zeolite crystallization. Pp. 20-43 in: Molecular Sieve Zeoliteş—I, Advances in Chemistry Series 101,American Chemical Society, Washington, DC.Google Scholar