Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T07:44:53.097Z Has data issue: false hasContentIssue false

Synthesis of nontronite and other Fe-rich smectites: a critical review

Published online by Cambridge University Press:  27 February 2018

S. Petit*
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers - IC2MP, UMR CNRS 7285, Université de Poitiers, F-86073 Poitiers Cedex 9, France
F. Baron
Affiliation:
Laboratoire de Planétologie et Géodynamique - LPG, UMR CNRS 6112, Université de Nantes, F-44300 Nantes, France
A. Decarreau
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers - IC2MP, UMR CNRS 7285, Université de Poitiers, F-86073 Poitiers Cedex 9, France
*

Abstract

The synthesis of clay minerals has been studied for decades in an attempt to better understand their formation in natural environments and more recently to obtain clay minerals with controlled compositions and properties. Even though nontronite has been synthesized successfully since 1935, the process is not a straightforward and has been poorly documented. In the present review concerning the synthesis of nontronite and other Fe-rich smectites, the experiments attempted in the past are discussed critically in light of the most recent data. Most notably, the application of relationships established recently, thanks to synthetic smectitic series, have allowed us to refine the chemical compositions of some nontronites synthesized previously.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrieux, P. & Petit, S. (2010) Hydrothermal synthesis of dioctahedral smectites: The Al-Fe chemical series. Part I: Influence of experimental conditions. Applied Clay Science, 48, 517.CrossRefGoogle Scholar
Baldermann, A., Dohrmann, R., Kaufhold, S., Nickel, C., Leetofsky-Papst, I. & Dietzel, M. (2014) The Fe-Mg-saponite solid solution series: a hydrothermal synthesis study. Clay Minerals, 49, 391415.CrossRefGoogle Scholar
Baron, F. (2016) Lefer dans les smectites: une approche par synthese minerale. PhD thesis, Poitiers University, France.Google Scholar
Baron, F., Petit, S., Tertre, E. & Decarreau, A. (2016a) Influence of aqueous Si and Fe speciation on tetrahedral Fe(III) substitutions in nontronites: A clay synthesis approach. Clays and Clay Minerals, 64, 189203.Google Scholar
Baron, F., Pushparaj, S.S.C., Fontaine, C., Sivaiah, M.V., Decarreau, A. & Petit, S. (2016b) Microwave-assisted hydrothermal synthesis of Ni-Mg layered silicate clays. Current Microwave Chemistry, 3, 8589.CrossRefGoogle Scholar
Baron, F., Petit, S., Pentrák, M., Decarreau, A. & Stucki, J. (2017) Revisiting the nontronite Mössbauer spectra. American Mineralogist, 102, 15011515.CrossRefGoogle Scholar
Berger, G., Meunier, A. & Beaufort, D. (2014) Clay mineral formation on Mars: Chemical constraints and possible contribution of basalt out-gassing. Planetary and Space Science, 95, 25–32.CrossRefGoogle Scholar
Bonnin, D., Calas, G., Suquet, H., & Pezerat, H. (1985) Sites occupancy of Fe + in Garfield nontronite: A spectroscopic study. Physics and Chemistry of Minerals, 12, 5564.Google Scholar
Brigatti, M.F., Galán, E. & Theng, B.K.G. (2013) Structure and mineralogy of clay minerals. Smectites. Pp. 42-45 in: Handbook of Clay Sciences, 2nd edition (F. Bergaya & G. Lagaly, editors). Elsevier, Amsterdam.Google Scholar
Caillèlre, S., Hénin, S. & Esquevin, J. (1953) Syntheses ä basse température de phyllites ferriferes. Comptes Rendus Académie Sciences (Paris), 237, 1724–1726.Google Scholar
Caillèlre, S., Hénin, S. & Esquevin, J. (1955) Syntheses ä basse température de quelques minéraux ferriferes (silicates, oxydes). Bulletin Société Française Minéralogie Cristallographie, 78, 227241.CrossRefGoogle Scholar
Cardile, C.M. & Johnston, J.H. (1985) Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy. Clays and Clay Minerals, 33, 295300.CrossRefGoogle Scholar
Carter, J., Poulet, F., Bibring I-R, Mangold, N. & Murchie, S. (2013) Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research: Planets, 118, 831858.Google Scholar
Carter, J., Loizeau, D., Mangold, N., Poulet, F. & Bibring, J.-P. (2015) Widespread surface weathering on early Mars: A case for a warmer and wetter climate. Icarus, 248, 373382.CrossRefGoogle Scholar
Cashion, J.D., Gates, W.P. & Thomson, A. (2008) Mössbauer and IR analysis of iron sites in four ferruginous smectites. Clay Minerals, 43, 8393.Google Scholar
Decarreau, A & Bonnin, D. (1986) Synthesis and crystal-logenesis at low temperature of Fe (III)-smectites by evolution of coprecipitated gels: Experiments in partially reducing conditions. Clay Minerals, 21, 861–877.CrossRefGoogle Scholar
Decarreau, A. & Petit, S. (2014) Fe3+/Al3+ partitioning between tetrahedral and octahedral sites in dioctahedral smectites. Clay Minerals, 49, 657665.CrossRefGoogle Scholar
Decarreau, A., Bonnin, D., Badaut-Trauth, D., Couty, R. & Kaiser, P. (1987) Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Minerals, 22, 207223.CrossRefGoogle Scholar
Decarreau, A., Petit, S., Vieillard Ph. & Dabert, N. (2004) Hydrothermal synthesis of aegirine at 200°C. European Journal of Mineralogy, 16, 85–90.CrossRefGoogle Scholar
Decarreau, A., Petit, S., Martin, F., Farges, F., Vieillard, P. & Joussein, E. (2008) Hydrothermal synthesis, between 75 and 150°C, ofhigh charge ferric nontronites. Clays and Clay Minerals, 56, 322337.Google Scholar
Ehlmann, B.L., Berger, G., Mangold, N., Michalski, J.R., Catling, D.C., Ruff, S.W., Chassefiere, E., Niles, P.B., Chevrier V & Poulet, F. (2013) Geochemical con-sequences of widespread clay mineral formation in Mars’ ancient crust. Space Science Reviews, 174, 329364.CrossRefGoogle Scholar
Ewell, R.H. & Insley, H. (1935) Hydrothermal synthesis of kaolinite, dickite, beidellite and nontronite. Journal of the National Bureau of Standards, 15, 173186.CrossRefGoogle Scholar
Farmer, V.C. (1997) Conversion of ferruginous allophones to ferruginous beidellites at 95°C under alkaline conditions with alternating oxidation and reduction. Clay and Clay Minerals, 45, 591597.CrossRefGoogle Scholar
Farmer, Y.C., Krishnamurti, G.S.R. & Huang, P.M. (1991) Synthetic allophone and layer-silicates formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23 °C and 89°C in a calcareous environment. Clays and Clay Minerals, 39, 561570.CrossRefGoogle Scholar
Farmer, Y.C., McHardy, W.J., Elsass, F. & Robert, M. (1994) hk-ordering in aluminous nontronite and saponite synthesized near 90°C: effects of synthesis conditions on nontronite composition and ordering. Clays and Clay Minerals, 42, 180186.CrossRefGoogle Scholar
Gates, W.P. (2005) Infrared spectroscopy and the chemistry of dioctahedral smectites. Pp. 125-168 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (J.T. Kloprogge, editor). CMS Workshop Lectures, 13, The Clay Minerals Society, Aurora, Colorado, USA.Google Scholar
Gaudin, A., Grauby, O., Noack, Y., Decarreau, A. & Petit, S. (2004a) The actual crystal chemistry of ferric smectites from the lateritic nickel ore of Murin Murin (Western Australia). I. XRD and multi-scale chemical approaches. Clay Minerals, 39, 301–315.Google Scholar
Gaudin, A., Petit, S., Rose, J., Martin, F., Decarreau, A., Noack Y & Borscheneck, D. (2004b) The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches. Clay Minerals, 39, 453467.Google Scholar
Goodman, B.A., Russell, J.D., Fraser, A.D. & Woodhams, F.W.D (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays Clay Minerals, 24, 5359.CrossRefGoogle Scholar
Grauby, O. (1993) Nature et étendue des solutions solides octaedriques argileuses. Approche par Synthese minérale. PhD thesis, Poitiers University, FranceGoogle Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1994) The nontronite-saponite series: an experimental approach. European Journal of Mineralogy, 6, 99112.CrossRefGoogle Scholar
Gupta, V.K., Mohan, D. & Saini, V.K. (2006) Studies on the interaction of some azo dyes (naphthol red-J and direct orange) with nontronite mineral. Journal of Colloid and Interface Science, 298, 7986.CrossRefGoogle ScholarPubMed
Güven, N. (1988) Smectites. Pp. 497-559 in: Hydrous Phyllosilicates (Exclusive of Micas). (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.Google Scholar
Hamilton, G. & Furtwängler, W (1951) Synthese von Nontronit. Tschermaks Mineralogishe und Petrographische Mitteilungen, 2, 397—406.Google Scholar
Harder, H. (1976) Nontronite synthesis at low temperature. Chemical Geology, 18, 169180.CrossRefGoogle Scholar
Harder, H. (1978) Synthesis of iron layer silicate minerals undernatural conditions. Clays and Clay Minerals, 26, 6572.CrossRefGoogle Scholar
Hofstetter, T.B., Neumann, A. & Schwarzenbach, R.P. (2006) Reduction of nitroaromatic compounds by Fe (II) species associated with iron-rich smectites. Environmental Science & Technology, 40, 235–242.Google Scholar
Ilgen, A.G., Foster, A.L. & Trainor, T.P. (2012) Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony. Geochimica et Cosmochimica Acta, 94, 128145.Google Scholar
Jaisi, D.P., Dong, H., Plymale, A.E., Fredrickson, J.K., Zachara, J.M., Heald, S. & Liu, C.(2009) Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chemical Geology, 264, 127138.CrossRefGoogle Scholar
Kaufhold, S., Stucki, J.W., Finck, N., Steininger, R., Zimina, A., Dohrmann, R., Ufer, K., Pentrák, M. & Pentráková L. (2017) Tetrahedral charge and Fe content in dioctahedral smectites. Clay Minerals, 52, 5165.Google Scholar
Kloprogge, J.T., Komarneni, S. & Amonette, E. (1999) Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals, 47, 529554.CrossRefGoogle Scholar
Kopp, O.C. (1967) Synthesis of grunerite and other phases in the system SiO2-NaOH-Fe-H2O. American Mineralogist, 52, 16811688.Google Scholar
Lajarige, C., Petit, S., Augas, C. & Decarreau, A. (1998) Stabilisation of Fe + ions in synthetic ferroan smectites. Comptes Rendus Académie Sciences Paris, 327, 789794.Google Scholar
Lantenois, S., Beny, J.M., Muller, F. & Champellier, R. (2007) Integration of Fe in natural and synthetic Al-pyrophyllites: an infrared spectroscopic study. Clays and Clay Minerals, 42, 129141.Google Scholar
Li, H., Li, Y., Xiang, L., Huang, Q., QiuJ., Zhang, H., Sivaiah, M.V., Baron, F., Barrault, J., Petit, S. & Valange, S. (2015) Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation. Journal of Hazardous Materials, 287, 3241.Google Scholar
Liu, R., Xiao, D., Guo, Y., Wang, Z. & Liu, I (2014) A novel photosensitized Fenton reaction catalyzed by sand-wiched iron in synthetic nontronite. RSC Advances, 4, 1295812963.Google Scholar
MacGregor-Ramiasa, M., Abrahamsson, C., Röding, M. & Nydén, M. (2015) Magnetic alignment of nontronite dispersions. Applied Clay Science, 116, 167–174.Google Scholar
Madejova, I, Komadel, P. & Čičel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319326.CrossRefGoogle Scholar
Mangold, N., Baratoux, D., Witasse, O., Encrenaz, T. & Sotin, C. (2016) Mars: a small terrestrial planet. The Astronomy and Astrophysics Review, 24, 15.Google Scholar
Meunier, A., Mas, A., Beaufort, D., Patrier, P. & Dudoignon, P. (2008) Clay minerals in basalt-hawaiite rocks from Mururoa atoll, French Polynesia. II. Petrography and geochemistry. Clays and Clay Minerals, 56, 730–750.CrossRefGoogle Scholar
Meunier, A., Petit, S., Ehlmann, B.L., Dudoignon, P., Westall, F., Mas, A., El Albani, A. & Ferrage, E. (2012) Magmatic precipitation as a possible origin of Noachian clays on Mars. Nature Geoscience, 5, 739743.CrossRefGoogle Scholar
Michot, L.J., Bihannic, I., Maddi, S., Baravian, C., Levitz, P. & Davidson, P. (2008) Sol-gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 1. features of the I.N transition. Langmuir, 24, 3127–3139.Google Scholar
Michot, L.J., Baravian, C., Bihannic, I., Maddi, S., Moyne, C., Duval, J.F.L., Levitz, P. & Davidson, P. (2009) Solgel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 2. Gel structure and mechanical properties. Langmuir, 25, 3127–3139.CrossRefGoogle ScholarPubMed
Michot, L.J., Paineau, E., Bihannic, I., Maddi, S., Duval, J.F.L., Baravian, C., Davidson P & Levitz, P. (2013) Isotropic/nematic and sol/gel transitions in aqueous suspensions of size selected nontronite NAu-1. Clay Minerals, 48, 663685.CrossRefGoogle Scholar
Milliken, R.E., & Bish, D.L. (2010) Sources and sinks of clay minerals on Mars. Philosophical Magazine, 90, 22932308.Google Scholar
Mizutani, T., Fukushima, Y., Okada, A., Kamigaito, O. & Kobayashi T (1991) Synthesis of 1:1 and 2:1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy. Clay and Clay Minerals, 39, 381386.Google Scholar
Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant, J.A., Bibring 1-P, Poulet, F., Bishop, J., Dobrea, E.N. et al. (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature, 454, 305309.Google Scholar
Nagase, T., Iwasaki, T., Ebina, T., Hayashi, H., Onodera Y & Chandra Dutta, N. (1999) Hydrothermal synthesis of Fe-montmorillonite in Si-Fe-Mg system. Chemistry Letters, 4, 303304.CrossRefGoogle Scholar
Neumann, A., Hofstetter, T.B., Skarpeli-Liati, M. & Schwarzenbach, R.P. (2009) Reduction of polychlori-nated ethanes and carbon tetrachloride by structural Fe(II) in smectites. Environmental Science & Technology, 43, 40824089.Google Scholar
Oyawoye, M.O. & Hirst, D.M. (1964) Occurrence of a montmorillonite mineral in the Nigerian younger granites at Ropp, Plateau Province, northern Nigeria. Clay Minerals, 5, 427433.Google Scholar
Paineau, E., Philippe, A.M., Antonova, K., Bihannic, I., Davidson, P., Dozov, I., Gabriel, J.C.P., Impéror-Clerc, M., Levitz, P., Meneau, F. & Michot, L.J. (2013) Liquid-crystalline properties of aqueous suspensions of natural clay nanosheets. Liquid Crystals Reviews, 1, 110126.CrossRefGoogle Scholar
Petit, S., Decarreau, A., Gates, W., Andrieux, P & Grauby, O. (2015) Hydrothermal synthesis of dioctahedral smectites: The Al—Fe3+ chemical series. Part II: Crystal chemistry. Applied Clay Science, 104, 96–105.CrossRefGoogle Scholar
Petit, S., Baron, F., Grauby, O. & Decarreau, A. (2016) Revisiting the cation mass-valence sum approach to assigning infrared OH-bands in dioctahedral smectites in the light of new data from synthetic Ga-Fe3+ smectites. Vibrational Spectroscopy, 87, 137–142.Google Scholar
Poulet, F., Bibring, J.P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., Gomez, C. & the Omega team (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature, 438, 623637.CrossRefGoogle ScholarPubMed
Slonimskaya, M.V., Besson, G., Daynyak, L.G., Tchoubar, C. & Drits, V.A. (1986) Interpretation of the IR spectra of celadonites, glauconites in the region of OH-stretching frequencies. Clay Minerals, 21, 377388.Google Scholar
Strese, H. & Hofmann, U. (1941) Synthesis of magnesian silicate gels with two dimensional regular structure. Zeitschrift für Anorganishe und Allgemeine Chemie, 247, 6595.CrossRefGoogle Scholar
Tomita, K., Yamane, H. & Kawano, M. (1993) Synthesis of smectite from volcanic glass at low temperature. Clays and Clay Minerals, 41, 655661.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier, London.Google Scholar
Wilson, M.J. (2013) Smectite clay minerals (beidellite, pp. 257-277; nontronite, pp. 278-299) in: Sheet Silicates, Rock-Forming Minerals, vol. 3C (W.A. Deer, R.A. Howie & 1 Zussman, editors). The Geological Society, London.Google Scholar
Wray, J.J., Murchie, S.L., Squyres, S.W., Seelos, F.P. & Tornabene, L.L. (2009) Diverse aqueous environments on ancient Mars revealed in the southern highlands. Geology, 37, 10431046.Google Scholar
Yang, J., Kukkadapu, R.K., Dong, H., Shelobolina, E.S., Zhang 1 & Kim 1 (2012) Effects of redox cycling of iron in nontronite on reduction of technetium. Chemical Geology, 291, 206216.Google Scholar
Zen, J.-M., Jeng, S.-H. & Chen, H.-J. (1996) Catalysis of the electroreduction of hydrogen peroxide by non-tronite clay coatings on glassy carbon electrodes. Journal of Electroanalytical Chemistry, 408, 157163.Google Scholar
Zhang, D., Zhou, C.-H., Lin, C.-X., Tong, D.-S. & Yu, W.-H. (2010) Synthesis of clay minerals. Applied Clay Science, 50, 111.Google Scholar
Zhou, C-H. (2010) Emerging trends and challenges in synthetic clay-based materials and layered double hydroxides. Applied Clay Science, 48, 1–4.Google Scholar