Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T07:27:13.374Z Has data issue: false hasContentIssue false

Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions

Published online by Cambridge University Press:  09 July 2018

A. Decarreau
Affiliation:
Laboratoire de Géochimie des Roches Sédimentaires, UA CNRS 723, Université Paris-Sud, F.91405 Orsay Cedex
D. Bonnin
Affiliation:
Laboratoire de Physique Quantique, UA CNRS 421, ESPCI, 10 rue Vauquelin, F.75231 Paris Cedex 05
D. Badaut-Trauth
Affiliation:
Laboratoire de Géochimie des Roches Sédimentaires, UA CNRS 723, Université Paris-Sud, F.91405 Orsay Cedex
R. Couty
Affiliation:
Laboratoire de Géologie, UA CNRS 224, Ecole Normale Supéieure, 46 rue d'Ulm, F.75005 Paris, France
P. Kaiser
Affiliation:
Laboratoire de Physique Quantique, UA CNRS 421, ESPCI, 10 rue Vauquelin, F.75231 Paris Cedex 05

Abstract

Silico-ferric coprecipitates, with chemical formula , were aged in suspension at 75°, 100° and 150°C and the structural evolution of solids with time studied by XRD, TEM, and IR, Mössbauer and EXAFS spectroscopy. The initial Si-Fe coprecipitate was found to be amorphous but showed local order similar to that of a smectite layer. At 75°C only a weak structural evolution of the silico-ferric product towards a smectite-like structure was observed. Experiments performed at 100° and 150°C led to synthesis of a ferric smectite with structural formula . During syntheses a highly soluble silico-ferric complex appeared; the Si/Fe atomic ratio of this complex was 3, and the apparent concentration of Fe3+ in solution reached 27 mm/l. These syntheses prove that the crystallization of a dioctahedral smectite, containing only Fe3+ atoms in the octahedral sheet, is possible under strictly oxidizing conditions. However, crystal growth of a ferric smectite under these conditions is slow and only syntheses carried out at sufficiently high temperatures give convincing results.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bancroft, G.M. (1973) Mössbauer Spectroscopy. An Introduction for Inorganic Chemists and Geochemists. McGraw Hill, New York.Google Scholar
Bastisse, E.-M. (1967) Dispersion du fer sous l'action de la silice agissant comme vecteur. C.R. Acad. Sc. Paris 264, 894896.Google Scholar
Besson, G., Bookin, A.S., Dainyak, L.G., Rautureau, M., Tsipursky, S.I., Tchoubar, C. & Drits, V.A. (1983) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites. J. Appl. Cryst. 16, 374383.CrossRefGoogle Scholar
Bischoff, J.L. (1972) A ferroan nontronite from the Red Sea geothermal system. Clays Clay Miner. 20, 217223.CrossRefGoogle Scholar
Bonnin, D., Calas, G., Suquet, H. & Pezerat, H. (1985) Sites occupancy of Fe3+ in Garfield nontronite. A spectroscopic study. Phys. Chem. Miner. 12, 5564.CrossRefGoogle Scholar
Bowie, S.H.U. (1955) Thucholite and hisingerite pitchblende complexes from Nicholson Mine, Saskatchewan, Canada. Bull. Geol. Surv. Great Britain 10, 4557.Google Scholar
Caillere, S., Henin, S. & Esquevin, J. (1955) Synthèse à basse température de quelques minéraux ferrifères (silicates et oxydes). Bull. Soc. franc. Minér. Crist. 78, 227241.Google Scholar
Calas, G., Levitz, P., Petiau, J., Bondot, P. & Loupias, G. (1980) Etude de l'ordre local autour du fer dans des verres silicatés naturels et synthetiques à l'aide de la spectroscopie d'absorption. X. Revue Phys. Appl. 15, 11611167.CrossRefGoogle Scholar
Calas, G. & Petiau, J. (1982) Short range order around FeII and MnII in oxide glasses determined by X-ray absorption spectroscopy in relation with other spectroscopic and magnetic properties. Pp 1828 in: Structure of Non-Crystalline Materials II (Gaskell, P. H., Parker, J. M. and Davis, F. A., editors). Taylor & Francis Ltd., London.Google Scholar
Cardile, C.M. & Johnston, J.H. (1985) Structural studies of nontronites with different iron contents by Fe Mössbauer spectroscopy. Clays Clay Miner. 33, 295300.CrossRefGoogle Scholar
Clark, A.M., Easton, A.J. & Mount, M. (1978) A study of the neotocite group. Mineral. Mag. 42, 279280.CrossRefGoogle Scholar
Coey, J.M.D. (1980) Clay minerals and their transformations studied with nuclear techniques: the contribution of Mössbauer spectroscopy. Atomic Energy Review 18, 73124.Google Scholar
Decarreau, A. (1980) Cristallogenèse expérimentale des smectites magnésiennes: hectorite, stevensite. Bull. Miner. 103, 579590.CrossRefGoogle Scholar
Decarreau, A. (1985) Partitioning of divalent transition elements between octahedral sheets of trioctahedral smectites and water. Geochim. Cosmochim. Acta 49, 15371544.CrossRefGoogle Scholar
Decarreau, A. & Bonnin, D. (1986) Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions. Clay Miner. 21, 861877.CrossRefGoogle Scholar
Eggleton, R.A. (1977) Nontronite: chemistry and X-ray diffraction. Clay Miner. 12, 181194.CrossRefGoogle Scholar
Eggleton, R.A., Pennington, J.H., Freeman, R.S. & Threadgold, I.M. (1983) Structural aspects of the hisingerite-neotocite series. Clay Miner. 18, 2131.CrossRefGoogle Scholar
Ewell, R.H. & Insley, H. (1935) Hydrothermal synthesis of kaolinite dickite, beidellite and nontronite. J. Res. Nat. Bur. Standards 15, 173186.CrossRefGoogle Scholar
Geiger, C.A., Henry, D.L., Bailey, S.W. & Maj, J.J. (1983) Crystal structure of cronstedtite 2H2 . Clays Clay Miner. 31, 97108.CrossRefGoogle Scholar
Goodman, B.A., Russell, J.D. & Fraser, A.R. (1976) A Mössbauer and I.R. spectroscopic study of the structure of nontronite. Clays Clay Miner. 24, 5359.CrossRefGoogle Scholar
Hamilton, G. & Furtwangler, W. (1951) Synthese von Nontronit. Tschermaks Mineral. Petrogr. Mitt. 3F.CrossRefGoogle Scholar
Harder, H. (1976) Nontronite synthesis at low temperature. Chem. Geol. 18, 169180.CrossRefGoogle Scholar
Harder, H. (1977) Clay mineral formation under lateritic conditions. Clay Miner. 12, 281287.CrossRefGoogle Scholar
Harder, H. (1978) Synthesis of iron layer silicate minerals under natural conditions. Clays Clay Miner. 26, 6572.CrossRefGoogle Scholar
Henmi, T., Wells, N., Childs, C.W. & Parfitt, R.L. (1980) Poorly-ordered iron-rich precipitates from springs and streams on andesitic volcanoes. Geochim. Cosmochim. Acta 44, 365372.CrossRefGoogle Scholar
Hino, M. & Sato, T. (1971) Infrared absorption spectra of silica gel H2O-D2O and H2 18O system. Bull. Chem. Soc. Japan 44, 3337.CrossRefGoogle Scholar
Kohyama, N. & Sudo, T. (1975) Hisingerite occurring as a weathering product of iron-rich saponite. Clays Clay Miner. 23, 215218.CrossRefGoogle Scholar
Kundig, W. & Bommel, H. (1966) Some properties of supported small Fe2O3 particles determined with the Mössbauer effect. Phys. Rev. 142, 327333.CrossRefGoogle Scholar
Lee, P.A., Citrin, P.H., Eisenberg, P. & Kincaid, B.M. (1981) Extended X-ray Absorption Fine Structure. Its strengths and limitations as a structural tool. Rev. Mod. Phys. 53, 769806.CrossRefGoogle Scholar
Lindquist, B. & Jansson, S. (1962) On the crystal chemistry of hisingerite. Am. Miner. 47, 13561362.Google Scholar
Manceau, A. & Calas, G. (1986) Nickel-bearing clay minerals: II. X-ray absorption study of Ni-Mg distribution. Clay Miner. 21, 341360.CrossRefGoogle Scholar
Murad, E. & Schwertmann, U. (1984) The influence of crystallinity on the Mössbauer spectrum of lepidocrocite. Mineral. Mag. 48, 507511.CrossRefGoogle Scholar
Pedro, G., Carmouze, J.P. & Velde, B. (1978) Peloidal nontronite formation in recent sediments of lake Tchad. Chem. Geology 23, 139149.CrossRefGoogle Scholar
Petruk, N., Farrell, D.M., Laufer, E.F., Tremblay, R.J. & Manning, P.G. (1977) Nontronite and ferruginous opal from the Peace River iron deposit in Alberta, Canada. Canad. Mineral. 15, 1421.Google Scholar
Pons, C.H., Tchoubar, C. & Tchoubar, D. (1980) Organisation des molécules d'eau à la surface des feuillets dans un gel de montmorillonites Na. Bull. Soc. fr. Miner. 103, 452456.Google Scholar
Raoux, D., Petiau, J., Bondot, P., Calas, G., Fontaine, A., Lagarde, P., Levitz, P., Loupias, G. & Sadoc, A. (1980) L'EXFAS appliqué aux déterminations structurales de milieux désordonnés. Rev. Phys. Appl. 15, 10791094.CrossRefGoogle Scholar
Rozenson, I. & Heller-Kallai, L. (1977) Mössbauer spectra of dioctahedral smectites. Clays Clay Miner. 25, 94101.CrossRefGoogle Scholar
Russell, J.D. (1979) An infrared spectroscopic study of the interaction of nontronite and ferruginous montmorillonite with alkalimetal hydroxides. Clay Miner. 14, 127137.CrossRefGoogle Scholar
Schenk, J.E. & Weber, W.J. (1968) Chemical interactions of dissolved silica with iron(II) and iron(III). J. Am. Water Works Assoc. 60, 199212.CrossRefGoogle Scholar
Singer, A., Stoffers, P., Heller-Kallai, L. & Szafranek, D. (1984) Nontronite in deep sea core from south pacific. Clays Clay Miner. 32, 375383.CrossRefGoogle Scholar
Sudo, T. & Nakamura, T. (1952) Hisingerite from Japan. Am. Miner. 37, 618621.Google Scholar
Teo, B.K. & Lee, P.A. (1980) Ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. J. Am. Chem. Soc. 101, 28152832.CrossRefGoogle Scholar
Tschuchrow, F.W., Swjagin, B.B., Dritz, W.A., Gorschkow, A.I., Jermilowa, L.P., Gollo, E.A. & Rudnizkaja, E.S. (1979) Uber ferripyro-phyllit. Chem. Erde 38, 324330.Google Scholar
Weber, W.J. & Stumm, W. (1965) Formation of a silicato-iron(III) complex in dilute aqueous solution. J. Inorg. Nucl. Chem. 27, 237239.CrossRefGoogle Scholar
Whelan, J.A. & Goldish, S.S. (1961) New data for hisingerite and neotocite. Am. Miner. 46, 14121423.Google Scholar
Winters, G.V. & Buckley, D.F. (1986) The influence of dissolved FeSi3(OH) on chemical equilibria in pore water from deep sea sediments. Geoehim. Cosmochim. Acta 50, 277288.CrossRefGoogle Scholar