Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T03:58:51.544Z Has data issue: false hasContentIssue false

Surface properties and clay mineralogy of hydrated halloysitic soil clays. II: Evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays

Published online by Cambridge University Press:  09 July 2018

B. Delvaux
Affiliation:
IRFA/CIRAD, Unité de Chimie des Interfaces, Place Croix du Sud, 1, B-1348 Louvain-la-Neuve, Belgium
A. J. Herbillon
Affiliation:
Centre de Pédologie Biologique, UP 6831 du CNRS, associée à l'Université de Nancy I, BP 5, F-54501 Vandoeuvre-les-Nancy Cedex, France
L. Vielvoye
Affiliation:
Section de Physico-chimie Minérale du Musée Royal de l'Afrique Centrale, Place Croix du Sud, 1, B-1348 Louvain-la-Neuve, Belgium
M. M. Mestdagh
Affiliation:
IRFA/CIRAD, Unité de Chimie des Interfaces, Place Croix du Sud, 1, B-1348 Louvain-la-Neuve, Belgium

Abstract

Six clays from volcanic ash soils at different stages of weathering differ in their relative halloysite content with respect to kaolinite and several surface properties, namely CEC, and exchange selectivity for K+. These three parameters are related to each other in that they all decrease with increasing soil weathering stage. XRD data show that the hydrated 1:1 layer-silicates in these clays combine with smectite to form interstratified H/Sm clay minerals. In these mixed-layers, the content and layer charge of smectitic units decrease as the relative halloysite content in the clay decreases. These clays thus depict a weathering sequence that is parallel to the weathering sequence of the soils from which they originate. It is also shown that the smectites in the H/Sm minerals have the distinctive composition and ESR spectrum of Fe-rich 2:1 clay minerals belonging to the beidellite-nontronite series. The information obtained explains why these clays have high CEC and distinct affinities for K+. It is hoped that this study will help to clarify the controversy concerning the CEC and related surface properties attributed to hydrated halloysite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, B.R., Jones, J.P.E. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinites. I. Clay Miner., 10, 247–255.CrossRefGoogle Scholar
Askenasy, P.E., Dixon, J.B. & Mackee, T.R. (1973) Spheroidal halloysite in a Guatemalan soil. Soil Sci. Soc. Am. Proc., 37, 799–803.CrossRefGoogle Scholar
Blakemore, L.C. (1983) Acid-oxalate extractable iron, aluminum and silicon. ICOMAND Circular letterNo. 5, appendix 1. Int. Committee for the Classification of Andisols, New Zealand Soils Bureau, Lower Hutt, New Zealand.Google Scholar
Brindley, G.W., Susuki, T. & Thiry, M. (1983) Interstratified kaolinite/smectites from the Paris basin; correlations of layers proportions, chemical compositions and other data. Bull. Mineral., 106, 403–410.Google Scholar
Carr, R.M., Chaikum, N. & Peake, B.M. (1977) An electron spin resonance study of some clay minerals. N.Z. Dep. Sci. Ind. Res. Bull., 218, 138–144.Google Scholar
Chaikum, N. & Carr, R.M. (1987) Electron spin resonance studies of halloysites. Clay Miner., 22, 287–296.CrossRefGoogle Scholar
Churchman, G J. & Theng, B.K.G. (1984) Interaction of halloysites with amides: mineralogical factors affecting complex formation. Clay Miner., 19, 161–175.CrossRefGoogle Scholar
Cradwick, P.D. & Wilson, M.J. (1972) Calculated X-ray diffraction profiles for interstratified kaolinite- montmorillonite. Clay Miner., 9, 395–105.CrossRefGoogle Scholar
Craig, D.C. & Loughnan, F.C. (1964) Chemical and mineralogical transformations accompanying the weathering of basic rocks from New South Wales. Aust. J. Soil Res., 2, 218–234.Google Scholar
Cruz, M.I., Letellier, M. & Fripiat, J.J. (1978) NMR study of adsorbed water. II: Molecular motions in the monolayer hydrate of halloysite. J. Chem. Phys., 68, 2018–2027.Google Scholar
Delvaux, B. (1988) Constituants et proprietes de surface des sols derives de pyroclastes basaltiques du Cameroun occidental. Approche genetique de leur fertilite. These, Univ. Catholique de Louvain, Belgium.Google Scholar
Delvaux, B., Herbillon, A.J., Dufey, J.E., Burtin, G. & Vielvoye, L. (1988) Adsorption selective du potassium sur certaines halloysites (10 A) de sols tropicaux developpes sur roches volcaniques. Signification mineralogique. C.R. Acad. Sci. Paris, T.307, sene II, 311317.Google Scholar
Delvaux, B., Herbillon, A.J. & Vielvoye, L. (1989a) Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon. Taxonomic, mineralogical and agronomic implications. Geoderma, 45, 375388.CrossRefGoogle Scholar
Delvaux, B., Mestdagh, M.M., Vielvoye, L. & Herbillon, A.J. (1989b) XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed-layer kaolinite/smectite Clay Miner., 24, 617–630.CrossRefGoogle Scholar
Delvaux, B., Herbillon, A.J., Dufey, J.E. & Vielvoye, L. (1990) Surface properties and clay mineralogy of hydrated halloysitic soil clays. I: Existence of interlayer K+ specific sites. Clay Miner., 25, 129–139.Google Scholar
Egashira, K., Dixon, J.B. & Hossner, L.R. (1982) High charge smectite from lignite overburden of East Texas. Proc. 7th Int. Clay Conf. Bologna & Pavia, 333345.Google Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London.CrossRefGoogle Scholar
Fontaine, S., Delvaux, B., Dufey, J.E. & Herbillon, A.J. (1989) Potassium exchange behaviour in Caribbean volcanic ash soils under banana cultivation. Plant Soil, 120, 283–290.CrossRefGoogle Scholar
Garrett, W.G. & Walker, G.F. (1959) The cation exchange capacity of hydrated halloysite and the formation of halloysite-salt complexes. Clay Miner. Bull., 4, 75–80.CrossRefGoogle Scholar
Goodman, B.A., Nadeau, P.H. & Chadwick, J. (1988) Evidence for the multiphase nature of bentonites from Mossbauer and EPR spectroscopy. Clay Miner., 23, 147–159.Google Scholar
Goodman, B.A., Russell, J.D. & Fraser, A.R. (1976) A Mossbauer and IR spectroscopic study of the structure of nontronite. Clays Clay Miner., 24, 53–59.CrossRefGoogle Scholar
Grim, R.E. (1968) Clay Mineralogy, p. 189. McGraw Hill, New York.Google Scholar
Harward, M.E. & Brindley, G.W. (1965) Swelling properties of synthetic smectites in relation to lattice substitution. Clays Clay Miner., 13, 209–222.Google Scholar
Herbillon, A.J., Mestdagh, M.M., VielvoyeL. & DerouaneE.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner., 11, 201–220.CrossRefGoogle Scholar
Herbillon, A. J., Frankart, R. & Vielvoye, L. (1981) An occurrence of interstratified kaolinite-smectite minerals in a red-black soil toposequence. Clay Miner., 16, 195–201.CrossRefGoogle Scholar
Herbillon, A.J., Delvaux, B., Rouiller, J. & Ngakanou, D. (1989) Halloysites from tropical ash-derived soils as minerals at the border between high activity and low activity days. Proc. Int. Soil Classification Conf. Alma Ata(in press).Google Scholar
Jones, J.P.E., Angel, B.R. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinites. II. Clay Miner,, 10, 257–269.CrossRefGoogle Scholar
Kantor, W. & Schwertmann, U. (1974) Mineralogy and genesis of days in red-black soil toposequences on basic igneous rocks in Kenya. J. Soil Sci., 25, 67–78.CrossRefGoogle Scholar
Karanthasis, A.D., Adams, G. & Hajek, B.F. (1983) Stability relationships in kaolinite, gibbsite and Al-hydroxy interlayered vermiculite soil systems. Soil Sci. Soc. Am. J,, 47, 1247–1251.Google Scholar
Lim, C.H., Jackson, M.L., Koons, R.D., & Helmke, P.A. (1980) Kaolins: sources of differences in cation exchange capacities and cesium retention. Clays Clay Miner., 28, 223–229.CrossRefGoogle Scholar
Malla, P.B. & Douglas, L.A. (1987) Identification of expanding layer silicates: layer charge vs expansion properties. Proc. Int. Clay Conf. Denver,, 277283.Google Scholar
Meads, R.E. & Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner., 10, 313–345.CrossRefGoogle Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 5, 317–327.Google Scholar
Mendelovici, E., Yariv, S.H. & Villalba, R. (1979) Iron-bearing kaolinite in Venezuelan laterites: I. Infrared spectroscopy and chemical dissolution evidence. Clay Miner., 14, 323–331.CrossRefGoogle Scholar
Mestdagh, M.M., Vielvoye, L. & Herbillon, A.J., (1980) Iron in kaolinites: II. The relationship between kaolinite crystallinity and iron content. Clay Miner., 15, 1–13.CrossRefGoogle Scholar
Nagasawa, K. & Miyazaki, S. (1976) Mineralogical properties of halloysite as related to its genesis. Proc. Int. Clay Conf. Illinois, 257265.Google Scholar
Nagasawa, K. & Noro, H. (1987) An electron spin resonance study of halloysites. Clay Sci. 6,, 261268.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1128 in: Chemistry of Clays and Clay Minerals (A.C.D. Newman, editor). Longman Scientific & Technical, Harlow.Google Scholar
Noro, H. (1986) Hexagonal platy halloysite in an altered tuff bed, Komaki City, Aichi Prefecture, Central Japan. Clay Miner., 21, 401415.CrossRefGoogle Scholar
Norrish, K. & Pickering, J.G. (1983) Clay minerals. Pp. 281-308 in: Soils, an Australian Viewpoint. Academic Press, London.Google Scholar
Okamura, Y. & Wada, K. (1984) Ammonium-calcium exchange equilibria in soils and weathered pumices that differ in cation-exchange materials. J. Soil Sci., 35, 387–396.CrossRefGoogle Scholar
Olivier, D., Vedrine, J.C. & Pezerat, H. (1975) Application de la resonance paTamagnetique electronique a la localisation du Fe3+ dans les smectites. Bull. Gr. Fr. Argiles, XXVII, 153165.CrossRefGoogle Scholar
Parfitt, R.L. & Churchman, G.J. (1988) Clay minerals and humus complexes in five Kenyan soils derived from volcanic ash. A discussion. Geoderma, 42, 365–366.CrossRefGoogle Scholar
Parker, T.W. (1969) A classification of kaolinites by infrared spectroscopy. Clay Miner,, 8, 135–141.CrossRefGoogle Scholar
Petit, S.D., Decarreau, A., Eymery, J.P. & Thomassin, J.H. (1988) Synthese de kaolinites ferriques a 200°C. Comparaison avec les kaolinites d'alteration supergene: teneur en fer, morphologie, cristallinite. C.R. Acad. Sci. Paris, T.307, serie II, 19611966.Google Scholar
Quantin, P. (1974) Hypotheses sur la genese des andosols en climat tropical: evolution de la pedogenese ttinitiale,> en milieu bien draine sur roches volcaniques. Cah. ORSTOM, ser Pedoi XII, 312.+en+milieu+bien+draine+sur+roches+volcaniques.+Cah.+ORSTOM,+ser+Pedoi+XII,+3–12.>Google Scholar
Quantin, P., Gautheyrou, J. & Lorenzoni, P. (1988) Halloysite formation through in situweathering of volcanic glass from trachytic pumices, Vico's Volcano, Italy. Clay Miner., 23, 423–437.Google Scholar
Quantin, P., Herbillon, A.J., Janot, C. & Sieffermann, G. (1984) L“halloysite” bianche riche en fer de Vate (Vanuatu)–Hypothese d'un edifice interstratifie halloysite-hisingerite. Clay Miner., 19, 629–643.CrossRefGoogle Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249-305 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley & G. Brown, editors). Mineralogical Society, London,Google Scholar
Robert, M. & Veneau, G. (1979) Stabilite des mineraux phylliteux 2:1 en conditions acides. Role de la composition octaedrique, Proc. 6th Int. Clay Conf. Oxford, 385394.Google Scholar
Rousseaux, J.M. (1978) Quantitative estimation of kaolinite in sediments by differential infrared spectroscopy. Clays Clay Miner., 26, 202–208.CrossRefGoogle Scholar
Soil Survey Staff (1975) Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. US Soil Conservation Service, USDA Agric. Handbook No. 436.Google Scholar
Suquei, H. (1978) Proprietes de gonflement et structure de la saponite. Comparaison avec la vermiculite. These, Univ. Paris VI, France.Google Scholar
Suquet, H., Iiyama, J.T., Kodama, H. & Pezerat, H. (1977) Synthesis and swelling properties of saponites with increasing layer charge. Clays Clay Miner., 25, 231–242.CrossRefGoogle Scholar
Tamura, T. (1958) Identification of clay minerals from acid soils. J. Soil Sci., 9, 141–147.CrossRefGoogle Scholar
Tardy, Y. & Garrels, R.M. (1974) A method of estimating the Gibbs energies of formation of layer silicates. Geochim. Cosmochim. Acta3S,, 11011116.CrossRefGoogle Scholar
Tazaki, K. (1982) Analytical electron microscopic studies of halloysite formation processes. Morphology and composition of halloysite. Proc. 7th Clay Conf. Bologna & Pavia, 573584.Google Scholar
Theng, B.K.G., Russell, M., Churchman, G.J. & Parfitt, R.L. (1982) Surface properties of allophane, halloysite and imogolite. Clays Clay Miner., 30, 143–149.Google Scholar
Thiry, M. & Weber, F. (1977) Convergence de comportement entre les interstratifies kaolinite-smectite et les fireclays. Clay Miner., 12, 83–91.CrossRefGoogle Scholar
Van Der Gaast, S.I., Mizota, C. & Jansen, J.H.F. (1986) Curved smectite in soils from volcanic ash in Kenya and Tanzania: a low-angle X-ray powder diffraction study. Clays Clay Miner., 34, 665–671.CrossRefGoogle Scholar
Velde, B. (1985) Clay Minerals. A Physico-Chemical Explanation of their Occurrence.Developments in Sedimentology 40, p. 297. Elsevier, Amsterdam.Google Scholar
Voinovitch, I.A., Debras-Guedon, J. & Louvrier, J. (1962) L'Analyse des Silicates. Hermann, Paris.Google Scholar
Wada, K. & Kakuto, Y. (1985) Embryonic halloysites in Ecuadorian soils derived from volcanic ash. Soil Sci. Soc. Am. J., 49, 1309–1318.Google Scholar
Wada, K., Kakuto, Y. & Muchena, F.N. (1987) Clay minerals and humus complexes in five Kenyan soils derived from volcanic ash. Geoderma, 39, 307–321.CrossRefGoogle Scholar
Wada, S.I. & Mizota, T. (1982) Iron-rich halloysite (10 A) with crumpled lamellar morphology from Hokkaido, Japan. Clays Clay Miner., 30, 315–317.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals,p. 153. Elsevier, Amsterdam.Google Scholar
Wiewiora, A. (1973) Mixed-layer kaolinite-smectite from lower Silesia, Poland: final report. Proc. Int. Clay Conf. Madrid,, 7587.Google Scholar
Wilson, M.J. (1987) Soil smectites and related interstratified minerals: recent developments. Proc. Int. Clay Conf. Denver,, 167173.Google Scholar
Wilson, M.J. & Cradwick, P.D. (1972) Occurrence of interstratified kaolinite-montmorillonite in some Scottish soils. Clay Miner., 9, 435-436.CrossRefGoogle Scholar
Yerima, B.P.K., Calhoun, F.G., Senkayi, A.L. & Dixon, J.B. (1985) Occurrence of interstratified kaolinite-smectite in El Salvador vertisols. Soil Sci. Soc. Am. J., 49, 462466.CrossRefGoogle Scholar