Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T18:29:44.408Z Has data issue: false hasContentIssue false

Surface modification of bentonites. VI. Sol-gel transitions of sodium and calcium montmorillonite dispersions in the presence of anionic end-capped poly(ethylene oxides)

Published online by Cambridge University Press:  09 July 2018

S. Ziesmer
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D-24098 Kiel, Germany
G. Lagaly*
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D-24098 Kiel, Germany
*

Abstract

Poly(ethylene oxides) (PEOs) with sulphonate groups attached at both chain ends (S-PEOs) were strongly adsorbed by dispersed Na- and Ca-montmorillonite particles. The amounts adsorbed were very similar to those of cationic end-capped poly(ethylene oxides). In both cases bilayers of PEO chains were intercalated so that the basal spacing of the particles reached the same plateau values of ~1.73 nm. In contrast, the influence of anionic PEOs on the colloidal behaviour of the Na- and Ca-montmorillonite dispersions was very different from the effect of the cationic PEOs. The shorter chain S-PEOs (S-PEO 1500, 4000) destabilized the Na-montmorillonite dispersions by coagulation due to the Na+ ions introduced as counterions to the S-PEOs. The longer chain S-PEO 20000 and S-PEO 35000 did not coagulate the Na-montmorillonite sols because the corresponding Na+ concentration did not reach the critical coagulation value. The slightly enhanced salt tolerance indicated that the long-chain PEOs exerted a weak steric stabilization. In contrast, bridging of the particles by S-PEO molecules and Ca2+ ions played an important role in destabilizing the Ca-montmorillonite dispersions in the form of flocs and formation of gels.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abend, S. & Lagaly, G. (2000) Sol—gel transitions of sodium montmorillonite dispersions. AppliedClay Science, 16, 201227.Google Scholar
Adachi, Y., Nakaishi, K. & Tamaki, M. (1998) Viscosity of a dilute suspension of sodium montmorillonite in an electrostatically stable condition. Journal of ColloidandInterface Science, 198, 100105.Google Scholar
Ammann, L., Bergaya, F. & Lagaly, G. (2005) Determination of the cation exchange capacity (CEC) of clays with copper complexes—revisited. Clay Minerals, 40, 441453.Google Scholar
Aranda, P. & Ruiz-Hitzky, E. (1992) Poly(ethylene oxide)—silicate intercalation materials. Chemistry of Materials, 4, 13951403.Google Scholar
Aranda, P. & Ruiz-Hitzky, E. (1999) Poly(ethylene oxide)/NH4 +—smectite nanocomposites. Applied Clay Science, 15, 119135.Google Scholar
Breen, C., Rawson, J.O., Mann, B.E. & Aston, M. (1998) In situ 133Cs and 1H solution-phase NMR, thermo-analytical and X-ray diffraction studies of the adsorption of polyalkyleneglycol on Texas bentonite. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 132, 1730.Google Scholar
Breen, C., Thompson, G. & Webb, M. (1999) Preparation, thermal stability and decomposition routes of clay Triton-X 100 composites. Journal of Materials Chemistry, 9, 31593165.CrossRefGoogle Scholar
Bückmann, A.F., Morr, M. & Johansson, G. (1981) Functionalization of poly(ethylene glycol) and monomethoxy - poly (ethylene glycol). Macromolecular Chemistry, 182, 13791384.Google Scholar
Bujdák, J., Hackett, E. & Giannelis, E.P. (2000) Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: implications on nanocomposite polymer electrolytes. Chemistry of Materials, 12, 21682174.CrossRefGoogle Scholar
Cadene, A., Durand-Vidal, S., Turq, P. & Brendle, J. (2005) Study of individual Na-montmorillonite particles size, morphology, and apparent charge. Journal of Colloidand Interface Science, 285, 719730.Google Scholar
Carrado, K.A., Bergaya, F., Decarreau, A. & Lagaly, G. (2006) Synthetic clay minerals and purification of natural clays. Pp. 115139 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Dau, J. & Lagaly, G. (1998) Surface modification of bentonites. II. Modification of montmorillonite with cationic poly(ethylene oxides). Croatica Chemica Acta, 71, 9831004.Google Scholar
Deng, Y., Dixon, J.B. & White, G.N. (2003) Intercalation and surface modification of smectite by two nonionic surfactants. Clays and Clay Minerals, 51, 150161.Google Scholar
Deng, Y., Dixon, J.B. & White, G.N. (2006) Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite. ColloidandPolymer Science, 284, 347356.Google Scholar
Grim, R.E. (1962) Applied Clay Mineralogy. McGraw-Hill, New York.Google Scholar
Harvey, C. & Lagaly, G. (2006) Conventional applications. Pp. 501540 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Jasmund, K. & Lagaly, G. (editors) (1993) Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt, Germany.Google Scholar
Jepson, W.B. (1984) Kaolins: their properties and uses. Philosophical Transactions of the Royal Society of London, A311, 411432.Google Scholar
Johansson, G. (1970) Studies on aqueous dextran poly(ethylene glycol) two phase systems containing charged poly(ethylene glycol). I. Partition of albumins. Biochimica Biophysica Acta, 222, 381389.Google Scholar
Lagaly, G. (1981) Characterization of clays by organic compounds. Clay Minerals, 16, 121.Google Scholar
Lagaly, G. (1994) Layer charge determination by alkylammoniumions. Pp 146 in: Charge Characteristics of 2:1 Clay Minerals (Mermut, A., editor), CMS workshop lectures, 6, The Clay Minerals Society, Boulder Colorado, USA.Google Scholar
Lagaly, G. (2005) From clay mineral crystals to colloidal clay mineral dispersions. Pp. 519600 in: Coagulation andFlocculation, 2nd edition (Stechemesser, H. & Dobia, B., editors). Surfactant Science Series, 126, CRC Press, Taylor and Francis Group, LLC, Boca Raton. Florida, USA.Google Scholar
Lagaly, G. (2006) Colloid Clay Science. Pp. 141245 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Lagaly, G. & Ziesmer, S. (2002) Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Advances in ColloidandInterface Science, 100-102, 105128.Google Scholar
Lagaly, G. & Ziesmer, S. (2005) Surface modification of bentonites. III. Sol—gel transitions of Na-montmorillonite in the presence of trimethylammonium-endcapped poly(ethylene oxides). Clay Minerals, 40, 523536.Google Scholar
Lagaly, G. & Ziesmer, S. (2006) Sol—gel transitions of sodium montmorillonite dispersions by cationic endcapped poly(ethylene oxides) (surface modification of bentonites. IV). ColloidandPolymer Science, 284, 947956.Google Scholar
Lagaly, G. & Ziesmer, S. (2007) Surface modification of bentonites. V. Sol—gel transitions of calcium montmorillonite dispersions by cationic end-capped poly(ethylene oxides). Clay Minerals, 42, 255269.CrossRefGoogle Scholar
Lagaly, G., Schulz, O. & Zimehl, R. (1997) Dispersionen undEmulsionen. Eine Einfuhrung in die Kolloidik feinverteilter Stoffe einschließlich der Tonminerale. Mit einem historischen Beitrag über Kolloidwissenschaftler von Klaus Beneke, Steinkopff Verlag, Darmstadt, Germany.Google Scholar
Lyklema, J. (1984) Points of zero charge in the presence of specific adsorption. Journal of Colloidand Interface Science, 99, 109117.Google Scholar
Lyklema, J. (1989) Discrimination between physical and chemical adsorption of ions on oxides. Colloids and Surfaces, 37, 197204.Google Scholar
Lyklema, J. (1995) Fundamentals of Colloid and Interface Science. Volume II: Solid-liquid interfaces. Academic Press, London.Google Scholar
Mermut, A.R. & Lagaly, G. (2001) Baseline studies of The Clay Minerals Society Source Clays: Layer charge determination and characteristics of those minerals containing 2:1 layers. Clays andClay Minerals, 49, 393397.Google Scholar
Mosquet, M., Chevalier, Y. & Le Perchec, P. (1997a) Functional polyethylene oxides as dispersing agents. New Journal of Chemistry, 21, 143145.Google Scholar
Mosquet, M., Chevalier, Y., Brunel, S., Guicquero, J.P. & Le Perchec, P. (1997b) Polyoxyethylene di-phosphonates as efficient dispersing polymers for aqueous suspensions. Journal of Applied Polymer Science, 65, 25452555.Google Scholar
Murray, H.H. (1986) Clays. Pp. 109136 in: Ullmann's Encyclopaedia of Industrial Chemistry. A7, VCH, Weinheim.Google Scholar
Murray, H.H. (1999) Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 3949.Google Scholar
Murray, H.H. (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. AppliedClay Science, 17, 207221.Google Scholar
Murray, H.H. (2003) Clays in industry. Pp. 314 in: A Clay Odyssey (Dominguez, E.A., Mas, G. R. & Cravero, F., editors). Proceedings of the 12th International Clay Conference 2001. Elsevier, Amsterdam.Google Scholar
Murray, H.H. & Kogel, J.E. (2005) Engineered clay products for the paper industry. AppliedClay Science, 29, 199206.Google Scholar
Napper, D.H. (1983) Polymeric Stabilization of Colloidal Dispersions. Academic Press, London.Google Scholar
Odom, E. (1984) Smectite clay minerals: properties and uses. Philosophical Transactions of the Royal Society of London, A311, 391409.Google Scholar
Overbeek, J.T.G. (1982) Strong and weak points in the interpretation of colloid stability. Advances in ColloidandInterface Chemistry, 16, 1730.Google Scholar
Parfitt, R.L. & Greenland, D.J. (1970) Adsorption of poly(ethylene glycols) on clay minerals. Clay Minerals, 8, 305315.Google Scholar
Penner, D. & Lagaly, G. (2000) Influence of organic and inorganic salts on the aggregation of montmorillonite dispersions. Clays andClay Minerals, 48, 246255.Google Scholar
Penner, D. & Lagaly, G. (2001) Influence of anions on the rheological properties of clay mineral dispersions. AppliedClay Science, 19, 131142.Google Scholar
Permien, T. & Lagaly, G. (1994) The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. I. Flow behavior of sodium montmorillonite in water-alcohol. Clay Minerals, 29, 751760.Google Scholar
Permien, T. & Lagaly, G. (1995) The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. V. Bentonite and sodium montmorillonite and surfactants. Clays and Clay Minerals, 43, 229236.Google Scholar
Ruiz-Hitzky, E. (1993) Conducting polymers intercalated in layered solids. Advanced Materials, 5, 334340.Google Scholar
Ruiz-Hitzky, E. & Aranda, P. (1990) Polymer-salt intercalation complexes in layered solids. Advanced Materials, 2, 545547.Google Scholar
Smalley, M.V., Hatharasinghe, H.L.M., Osborne, I., Swenson, J. & King, S.M. (2001) Bridging flocculation in vermiculite—PEO mixtures. Langmuir, 17, 38003812.Google Scholar
Sonon, L.S. & Thompson, M.L. (2005) Sorption of a nonionic polyoxyethylene lauryl ether surfactant by 2:1 layer silicates. Clays andClay Minerals, 53, 4554.Google Scholar
Strawhecker, K.K. & Manias, E. (2003) Crystallization behaviour of poly(ethylene oxide) in the presence of Na+ montmorillonite fillers. Chemistry of Materials, 15, 844849.Google Scholar
Tributh, H. & Lagaly, G. (1986a) Aufbereitung und Identifizierung von Boden- und Lagerstättentonen., I. Aufbereitung der Proben im Labor. GIT-Fachzeitschrift für das Laboratorium, 30, 524529.Google Scholar
Tributh, H. & Lagaly, G. (1986b) Aufbereitung und Identifizierung von Boden- und Lagerstättentonen. II. Korngrößenanalyse und Gewinnung von Tonsubfraktionen. GIT-Fachzeitschrift für das Laboratorium, 30, 771776.Google Scholar
Van Olphen, H. (1977) An Introduction to Clay Colloid Chemistry, 2nd edition. John Wiley & Sons, New York.Google Scholar
Zhao, X., Urano, K. & Ogasawara, S. (1989) Adsorption of polyethylene glycol from aqueous solutions on montmorillonite clays. Colloidand Polymer Science, 267, 899906.Google Scholar