Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T14:38:33.675Z Has data issue: false hasContentIssue false

Sudoite in some Visean (Lower Carboniferous) K-bentonites from Belgium

Published online by Cambridge University Press:  09 July 2018

A. Anceau*
Affiliation:
Laboratoire de Géologie des Argiles, Université de Liège, Allée du 6 Août B 18, B-4000 Liège, Belgique

Abstract

Sudoite occurs as a cryptocrystalline clay in some Visean K-bentonites from Belgium. Usually associated with illite-smectite mixed-layers, this chlorite has been found locally as a monomineralic clay component of a K-bentonite bed. The mineral has a composition close to (Al3Mg2)(Si3Al)O10(OH)8. The cell parameters have been calculated from the diffractogram using the space group C2/m (a = 5·228, b = 9·056, c = 14·326 Å, β = 97°00′, d(060) = 1·509 Å). The polytype corresponds to a IIb structure. Some hypotheses are proposed for the origin of this chlorite. The coexistence of sudoite and pyrite could explain why the chlorite present in Visean K-bentonites is not a Fe-rich species typical of diagenetic conditions, but a Fe-poor one.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Buseck, P.R. (1988) Al-chlorite as a hydration reaction product of andalusite: a new occurrence. Mineral. Mag., 52, 396–399.Google Scholar
Appleman, D.E. & Evans, H.T. Jr. (1973) Indexing and Least-Squares Refinement of Powder Diffraction Data. Report PB216188. US Dept, of Commerce, National Technical Information Service, Springfield, VA 22151.Google Scholar
Bailey, S. W. (1980a) Summary of recommendations of the A.I. P.E. A. nomenclature committee. Can. Mineral., 18, 143150.Google Scholar
Bailey, S. W. (1980b) Structures of layer silicates. Pp. 1123 in: Crystal Structures of Clay Minerals and their X-ray Identification(Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Bailey, S.W. (1988) Chlorites: structures and crystal chemistry. Pp. 347403 in: Hydrous Phyllosilicates (Exclusive of Micas)(S.W. Bailey, editor). Reviews in Mineralogy, vol. 19. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Bailey, S.W. & Lister, J.S. (1989) Structures, compositions, and X-ray diffraction identification of dioctahedral chlorites. Clays Clay Miner., 37, 193–202.Google Scholar
Bailey, S.W., Brindley, G.W., Kodama, H. & Martin, R.T. (1979) Report of the Clay Minerals Society Nomenclature Committee for 1977 and 1978. Clays Clay Miner., 27, 23S239.Google Scholar
Berner, R.A. (1984) Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta, 48, 605–615.Google Scholar
Berner, R.A. (1985) Sulphate reduction, organic matter decomposition and pyrite formation. Pp. 2538 in: Geochemistry of Buried Sediments(Eglinton, G., Curtis, C.D., McKenzie, D.P. & D.G. Murchison, editors). Phil. Trans. Roy. Soc. Lond. A315, London.Google Scholar
Brindley, G.W. (1980) Order-disorder in day mineral structures. Pp. 125-195 in: Crystal Structures of Clay Minerals and their X-ray Identification(Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Conil, R., Groessens, E. & Pirlet, H. (1977) Nouvelle charte stratigraphique du Dinantien type de ta Belgique. Ann. Soc. Geoi Nord XCW,, 363371.Google Scholar
Dixon, J.B. & Jackson, M.L. (1960) Mineralogical analysis of soil clays involving vermiculite-chlorite-kaolinite differentiation. Clays Clay Miner., 8, 274–286.Google Scholar
Eberl, D.D. & Velde, B. (1989) Beyond the Kubler index. Clay Miner., 24, 571–577.Google Scholar
Eggleton, R.A. & Bailey, S.W. (1967) Structural aspects of dioctahedral chlorite. Am. Miner., 52, 673–689.Google Scholar
Fransolet, A.-M. & Bourguignon, P. (1978) Di/trioctahedral chlorite in quartz veins from the Ardenne, Belgium. Can. Mineral., 16, 365–373.Google Scholar
Fransolet, A.-M. & Schreyer, W. (1984) Sudoite, di/trioctahedral chlorite: a stable low-temperature phase in the system MgO-Al2O3-SiO2-H2O. Contr. Miner. Petrol., 86, 409–417.CrossRefGoogle Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull., 87, 725–737.Google Scholar
Kramm, U. (1980) Sudoite m low-grade metamorphic manganese rich assemblages. N. Jb. Miner. Abh., 138, 113.Google Scholar
Lin, C.-Y. & Bailey, S.W. (1985) Structural data for sudoite. Clays Clay Miner., 33, 410–414.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, 317–327.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals, pp. 146147. Oxford University Press.Google Scholar
Percival, J.B. & Kodama, H. (1989) Sudoite from Cigar Lake. Saskatchewan. Can. Mineral. 27, 633641. Google Scholar
Środoń, J. (1984) X-ray powder diffraction identification of iliiitic materials. Clays Clay Miner., 32, 337–349.Google Scholar
Środoń, J. & Eberl, D.D. (1984) Illite. Pp. 495544 in: Micas(Bailey, S.W., editor). Reviews in Mineralogy, vol. 13. Mineralogical Society of America, Washington, DC.Google Scholar
Sudo, T. & Sato, M. (1966) Dioctahedral chlorite. Proc. Int. Clay Conf. Jerusalemy, 1, 33–39; 2, 25-26.Google Scholar
Thorez, J. & Pirlet, H. (1978) Petrology of K-bentonite beds in the carbonates series of the Visean and Tournaisian stages of Belgium. Proc. 6th Int. Clay Conf., Oxford,, 323332.Google Scholar
Ungethüm, H. (1965) Eine neue Methode zur Bestimmung von Eisen (II) in Gesteinen und Mineralen, insbesondere auch in bitumenhaltigen Problem. Zeit. fiir angewandte Geol. XI, 500505.Google Scholar
Weaver, C.E. (1953) Mineralogy and petrology of some Ordovician K-bentonites and related limestones. Bull. Geol Soc. Am., 64, 921–944.Google Scholar
Weaver, C.E. (1959) The clay petrology of sediments. Clays Clay Miner., 6, 154–187.Google Scholar
Weaver, C.E. (1989) Clays, Muds, and Shales.(Developments in Sedimentology 44). Elsevier, Amsterdam.Google Scholar
Whitney, G. & Northrop, H.R. (1988) Experimental investigation of the smectite to illite reaction: Dual reaction mechanisms and oxygen-isotope systematics. Am. Miner., 73, 77–90.Google Scholar