Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T10:43:38.893Z Has data issue: false hasContentIssue false

Study of the Maillard reaction products formed by glycine and D- glucose on different mineral substrates

Published online by Cambridge University Press:  09 July 2018

M. Bosetto*
Affiliation:
Dipartimento di Scienza del Suoloe Nutrizione della Pianta, Università di Firenze, Piazzale Cascine 28, 50144 Firenze
P. Arfaioli
Affiliation:
Dipartimento di Scienza del Suoloe Nutrizione della Pianta, Università di Firenze, Piazzale Cascine 28, 50144 Firenze
O. L. Pantani
Affiliation:
Istituto per la Genesie l'Ecologia del Suolo (IGES) CNR, Firenze, Piazzale Cascine 28, 50144 Firenze, Italy
*

Abstract

This work deals with the formation of humic-like compounds, products of the Maillard reaction between glycine and D-glucose, on clay (K+, Ca2+ and Al3+-saturated montmorillonite and kaolinite) and quartz systems in the presence of the same cations. Natural quartz was used as the control while the effect of cation type, mineral substrate and CEC was evaluated. All the systems form humic-like substances that are probably responsible for the decrease in the pH (H2O) after 30 d. The type of cation does not influence the overall production of humic substances, while the amount of cations controls the formation of humic-like material especially in the presence of clays. A mineral surface is necessary to synthesize molecules with this high degree of complexity.

Fulvic-like compounds are produced in great amounts on natural quartz and their formation is hampered by the presence of ‘free’ cations, regardless of their amount. Humic substances do not penetrate the interlayer of montmorillonite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreux, F. (1982) Genesis and properties of humic molecules. Pp. 109139 in: Constituents and Properties of Soils (Bonneau, M. et al. ,editors). Academic Press, London.Google Scholar
Arfaioli, P., Ristori, G.G., Bosetto, M. & Fusi, P. (1997) Humic-like compounds formed from L-tryptophan and D-glucose in the presence of Cu (II). Chemosphere, 35, 575584.CrossRefGoogle Scholar
Arfaioli, P., Pantani, O.L., Bosetto, M. & Ristori, G.G. (1999) Influence of clay minerals and exchangeable cations on the formation of humic-like substances (melanoidins) from D-glucose and L-tyrosine. Clay Minerals, 34, 487497.CrossRefGoogle Scholar
Benzing-Purdie, L. & Ripmeester, J.A. (1983) Melanoidins and soil organic matter: evidence of strong similarities revealed by 13C CP-MAS NMR. Soil Science Society of America Journal, 47, 5661.CrossRefGoogle Scholar
Benzing-Purdie, L., Ripmeester, J.A. & Preston, C.M. (1983) Elucidation of the nitrogen forms in mela- noidins and humic acid by nitrogen- 15 cross polarization-magic angle spinning nuclear magnetic resonance spectroscopy. Journal of Agricultural and Food Chemistry, 31, 913915.CrossRefGoogle Scholar
Boon, J.J., De Leeuw, J.W., Rubinsztain, Y., Aizenshtat, Z., Ioselin, P. & Ikan, R. (1984) Thermal evaluation of some model melanoidins by Curie-point pyrolysismass spectrometry and gas chromatography-mass spectrometry. Organic Geochemistry, 6, 805811.CrossRefGoogle Scholar
Bosetto, M., Arfaioli, P., Ristori, G.G. & Fusi, P. (1994) Influence of some homoionic clays on the formation of melanoidinic compounds from glucose and tryptophan. Fresenius Environmental Bulletin, 3, 371376.Google Scholar
Bosetto, M., Arfaioli, P., Ristori, G.G. & Fusi, P. (1995) Formation of melanin- type compounds from L-tryptophan on Ca- and Al-saturated clays. Fresenius Environmental Bulletin, 4, 367374.Google Scholar
Bosetto, M., Arfaioli, P., Pantani, O.L. & Ristori, G.G. (1997) Study of the humic-like compounds formed from L-tyrosine on homoionic clays. Clay Minerals, 32, 341349.CrossRefGoogle Scholar
Chen, Y., Senesi, N. & Schnitzer, M. (1977) Information provided on humic substances by E4/E6 ratios. Soil Science Society of America Journal, 41, 352358.CrossRefGoogle Scholar
Ciavatta, C. & Govi, M. (1993) Use of insoluble polyvinylpirrolidone and isoelectric focusing in the study of humic substances in soils and organic wastes. Journal of Chromatography, 643, 261270.CrossRefGoogle Scholar
Ciavatta, C., Govi, M., Vittori, A. & Sequi, P. (1991) Determination of organic carbon in aqueous extracts of soils and fertilizers. Soil Science Plant Analysis, 22, 795807.CrossRefGoogle Scholar
Ertel, J.R. & Hedges, J.I. (1983) Bulk chemical and spectroscopic properties of marine and terrestrial humic acids, melanoidins and catechol-based synthetic polymers. Pp. 143163 in: Aquatic and Terrestrial Humic Materials (Christman, R.F. et al. ,editors). Ann Arbor Science, Michigan, USA.Google Scholar
Hedges, J.I. (1977) The formation and clay mineral reactions of mela noidi ns. Geochimi ca et Cosmochimica Acta, 42, 6976.CrossRefGoogle Scholar
Hodge, J.E. (1953) Chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry, 1, 928943.CrossRefGoogle Scholar
Hoering, R.C. (1973) A comparison of melanoidins and humic acids. Carnegie Institute Washing ton Yearbook, 72, 682690.Google Scholar
Ikan, R. (1996) The Maillard Reaction,1st edition. John Wiley & Sons, Chichester, UK.Google Scholar
Ikan, R., Ioselis, P., Rubinsztain, Y. & Aizenshtat, Z. (1986a) Carbohydrate origin of humic substances. Naturwissenschaften, 73, 150151.CrossRefGoogle Scholar
Ikan, R., Rubinsztain, Y., Ioselis, P., Aizenshtat, Z., Pugmire, R., Anderson, L.L. & Woolfenden, W.R. (1986b) Carbon-13 cross polarized magic angle samples spinning nuclear magnetic resonance of melanoidins. Organic Geochemistry, 9, 199212.CrossRefGoogle Scholar
Ikan, R., Ioselis, P., Rubinsztain, Y., Aizenshtat, Z., Miloslavsky, I., Yariv, S., Pugmire, R., Anderson, L.L., Woolfenden, W.R., Kaplan, I.R., Dorsey, T., Peters, K.E., Boon, J.J., De Leeuw, J.W., Ishwatari, R., Morinaga, S., Yamamoto, S., Macihara, T., Muller-Vonmoos, M. & Rub, A. (1992) Chemical, isotopic, spectroscopic and geochemical aspects of natural and synthetic humic substances. The Science of the Total Environment, 117/118, 112.CrossRefGoogle Scholar
Keren, R., Gast, R.G. & Barnhisel, R.I. (1977) Ion exchange reactions in nondried chambers of montmorillonite hydroxy-aluminium complexes. Soil Science Society of America Journal, 41, 3439.CrossRefGoogle Scholar
Maillard, L.C. (1912) Action des acides aminés sur les sucres: Formation des melanoidines par voie méthodique. Compte Rendus Hebd. Séances Academie Science, Paris, 154, 6668.Google Scholar
Mayer, L.M. & Xing, B. (2001) Organic matter-surface area relationships in acid soils. Soil Science Society of America Journal 65, 250258.CrossRefGoogle Scholar
Naidja, A. (1988) Action catalitique des argiles de type smectites dans les réactions biochimiques. PhD thesis, Univ. Haute Alsace, Mulhouse, France.Google Scholar
Naidja, A. & Siffert, B. (1989) Glutamic acid decarboxylation of isocitric acid in the presence of montmorillonite. Clay Minerals, 24, 649661.CrossRefGoogle Scholar
Naidja, A. & Siffert, B. (1990) Oxidative deamination in the presence of montmorillonite. Clay Minerals, 25, 2737.CrossRefGoogle Scholar
Rubinsztain, Y., Ioselis, P., Ikan, R. & Aizenshtat, Z. (1984) Investigations on the structural units of melanoidins. Organic Geochemistry, 6, 797804.CrossRefGoogle Scholar
Siffert, B. & Naidja, A. (1987) Stereoselectivity of montmorillonite in the adsorption and deamination of some amino acids. Clay Minerals, 27, 109118.CrossRefGoogle Scholar
Stadtman, F.H., Chichester, C.O. & Rooney, C.S. (1952) Carbon dioxide production in the browning reaction. Journal of the American Chemical Society, 74, 31943196.CrossRefGoogle Scholar
Stevenson, F.J. (1994) Biochemistry of the formation of humic substances. Pp. 206211 in: Humus Chemistry, 2nd edition. John Wiley & Sons, New York.Google Scholar
Taguchi, K. & Sampei, Y. (1986) The formation and clay mineral and CaCO3 association reactions of melanoidins. Organic Geochemistry, 10, 10811089.CrossRefGoogle Scholar
Theng, B.K.G. (1971) Mechanism of formation of colored clay-organic complexes. A review. Clays and Clay Minerals, 19, 383390.CrossRefGoogle Scholar
Wang, M.C. (1991) Catalysis of nontronite in phenols and glycine transformat ions. Clays and Clay Minerals, 39, 202210.Google Scholar
Wang, M.C. & Huang, P.M. (1987) Catalytic polymerization of hydroquinone by nontronite. Canadian Journal of Soil Science, 67, 867875.CrossRefGoogle Scholar
Wang, M.C. & Huang, P.M. (1989a) Catalytic power of nontronite, kaolinite and quartz and their reaction sites in the formation of hydroquinone- derived polymers. Applied Clay Science, 4, 4357.CrossRefGoogle Scholar
Wang, M.C. & Huang, P.M. (1989b) Pyrogallol transformations as catalyzed by nontronite, bentonite, and kaolinite. Clays and Clay Minerals, 37, 525531.CrossRefGoogle Scholar
Wang, T.S.C. & Song, W.L. (1977) Clay minerals as heterogeneous catalysts in preparation of model humic substances. Zeit schrift fur Pflanzenernahrung und Bodenkunde, 140, 669676.CrossRefGoogle Scholar
Wang, T.S.C., Li, S.W., Huang, P.M. & Song, W.L. (1978) Catalytic polymerization of phenolic compounds by clay minerals. Soil Science, 126, 1521.CrossRefGoogle Scholar
Wang, T.S.C., Ming, M.K. & Huang, P.M. (1980) The effect of pH on the catalytic synthesis of humic substances by illite. Soil Science, 129, 333338.CrossRefGoogle Scholar
Wang, T.S.C., Chen, J.H. & Hsiang, W.M. (1985) Catalytic synthesis of humic acids containing various amino acids and dipeptides. Soil Science, 140, 310.CrossRefGoogle Scholar
Watanabe, A. & Kuwatsuka, S. (1992) Chemical characteristics of soil fulvic acids fractionated using polyvinylpyrrolidone (PVP). Soil Science and Plant Nutrition, 38, 3141.CrossRefGoogle Scholar
Wolform, M.L., Schlicht, R.C., Langer, A.W.J. & Rooney, C.S. (1953) Chemical interactions of amino compounds and sugar. IV. The repeating unit in browning polymers. Journal of the American Chemical Society, 75, 1013.Google Scholar
Yamamoto, S. & Ishwatari, R. (1989) A study of the formation mechanism of sedimentary humic substances. II. Protein based melanoidin model. Organic Geochemistry, 14, 479489.CrossRefGoogle Scholar