Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-16T21:24:58.655Z Has data issue: false hasContentIssue false

Study of interactions between rhodamine B and a beidellite-rich clay fraction

Published online by Cambridge University Press:  06 August 2020

Hamida Belhanafi
Affiliation:
Laboratory of Biodiversity and Conservation of Soil and Water, Mostaganem University, B.P. 992 RP, Algeria
Abdellah Bakhti*
Affiliation:
Laboratory of Biodiversity and Conservation of Soil and Water, Mostaganem University, B.P. 992 RP, Algeria
Noureddine Benderdouche
Affiliation:
Laboratory of Structure, Elaboration and Application of Molecular Materials, Mostaganem University, B.P. 188, Algeria
*

Abstract

The interaction between a basic dye, rhodamine B, and a separated fine fraction from natural clay was studied. Chemical analysis, X-ray diffraction and Fourier-transform infrared spectroscopy confirmed the predominance of beidellite in the fine clay fraction. The interaction of rhodamine B with the fine clay fraction showed that sorption was fast and followed a pseudo-second-order kinetic model. The comparison between sorbed rhodamine B amounts as a function of the various experimental parameters such as pH, sorbent mass, dye concentration and the presence of competing ions suggests that: (1) the sorption process is largely pH-dependent; (2) significant competition is observed between the dye and the Ca2+ and Mg2+ ions; (3) the sorption proceeds, principally, by a cation-exchange mechanism; and (4) the sorption capacity of the fine fraction in the presence of competing cations such as Ca2+ is ~0.28 mmol g–1.

Type
Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Huaming Yang

References

Abidi, S.L. (1982) Detection of diethylnitrosamine in nitrite-rich water following treatment with Rhodamine flow tracers. Water Research, 16, 199204.CrossRefGoogle Scholar
Ajmal, M. & Khan, A.U. (1985) Effects of a textile factory effluent on soil and crop plants. Environmental Pollution Series A, Ecological and Biological, 37, 131148.CrossRefGoogle Scholar
Alexander, M. (1994) Biodegradation and bioremediation. Academic Press, San Diego, CA, USA, 453 pp.Google Scholar
An, X., Xiao, B., Di, X., Dong, H. & Tang, H. (2017) Research progress on aging of organic pollutants in geosorbents: a review. Acta Geochimica, 36, 2743.CrossRefGoogle Scholar
Bergaya, F., Stroiazzo, J.P., Trauth, N. & Van Damme, H. (1986) Caractérisation de la fraction fine de trois argiles de gisements exploités comme substance utile en France, Tunisie et Arabie. Clay Minerals, 21, 965970.CrossRefGoogle Scholar
Bhattacharyya, K.G., SenGupta, S. & Sarma, G.K. (2014) Interactions of the dye, rhodamine B, with kaolinite and montmorillonite in water. Applied Clay Science, 99, 717.CrossRefGoogle Scholar
Bishop, J., Madejová, J., Komadel, P. & Fröschl, H. (2002) The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Minerals, 37, 607616.CrossRefGoogle Scholar
Borchardt, G.A. (1977) Montmorillonite and other smectite minerals. Pp. 293330 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America, Madison, WI, USA.Google Scholar
Brindley, G.W. & Nakahira, M. (1959) The kaolinite–mullite reaction series: I. A survey of outstanding problems. Journal of the American Ceramic Society, 42, 311314.CrossRefGoogle Scholar
Caillère, S., Henin, S. & Rautureau, M. (1982) Minéralogie des Argiles. Masson, Paris, France, 421 pp.Google Scholar
Casal, B., Merino, J., Ruiz-Hitzky, E., Gutierrez, E. & Alvarez, A. (1997) Characterization, pillaring and catalytic properties of a saponite from Vicálvaro, Madrid, Spain. Clay Minerals, 32, 4154.CrossRefGoogle Scholar
Chen, M., Liu, J., Bi, Y., Rehman, S., Dang, Z. & Wu, P. (2020a) Multifunctional magnetic MgMn-oxide composite for efficient purification of Cd2+ and paracetamol pollution: synergetic effect and stability. Journal of Hazardous Materials, 388, 122078.CrossRefGoogle Scholar
Chen, M., Wu, P., Zhu, N., Dang, Z., Bi, Y. & Pei, F. (2020b) Re-utilization of spent Cu2+-immobilized MgMn-layered double hydroxide for efficient sulfamethoxazole degradation: performance and metals synergy. Chemical Engineering Journal, 392, 123709.CrossRefGoogle Scholar
Chiu, Y.C., Huang, L.N., Uang, C.M. & Huang, J.F. (1990) Determination of cation exchange capacity of clay minerals by potentiometric titration using divalent cation electrodes. Colloids and Surfaces, 46, 327337.CrossRefGoogle Scholar
Christidis, G.E. & Eberl, D.D. (2003) Determination of layer-charge characteristics of smectites. Clays and Clay Minerals, 51, 644655.CrossRefGoogle Scholar
Christidis, G.E., Dellisanti, F., Valdre, G. & Makri, P. (2005) Structural modifications of smectites mechanically deformed under controlled conditions. Clay Minerals, 40, 511522.CrossRefGoogle Scholar
Çoban, F. & Ece, Ö.I. (1999) Fe3+-rich montmorillonite-beidellite series in Ayvacik bentonite deposit, Biga Peninsula, northwest Turkey. Clays and Clay Minerals, 47, 165173.CrossRefGoogle Scholar
Curtin, D., Syers, J.K. & Smillie, G.W. (1987) The importance of exchangeable cations and resin-sink characteristics in the release of soil phosphorus. European Journal of Soil Science, 38, 711716.CrossRefGoogle Scholar
da Silva Lacerda, V., López-Sotelo, J.B., Correa-Guimarães, A., Hernảndez-Navarro, S., Sảnchez-Bảscones, M., Navas-Gracia, L.M. et al. (2015) Rhodamine B removal with activated carbons obtained from lignocellulosic waste. Journal of Environmental Management, 55, 6776.CrossRefGoogle Scholar
Dickin, S.K., Schuster-Wallace, C.J., Qadir, M. & Pizzacalla, K. (2016) A review of health risks and pathways for exposure to wastewater use in agriculture. Environmental Health Perspective, 124, 900909.CrossRefGoogle ScholarPubMed
Drumond Chequer, F.M., de Oliveira, G.A.R., Ferraz, E.A.R., Cardoso, J.C., Zanoni, M.V.B. & de Oliveira, D.P. (2013) Textile dyes: dyeing process and environmental impact. Pp. 151176 in: Eco-Friendly Textile Dyeing and Finishing (Günay, M., editor). InTech, Zagreb, Croatia.Google Scholar
Emmerich, K., Wolters, F., Kahr, G. & Lagaly, G. (2009) Clay profiling: the classification of montmorillonites. Clays and Clay Minerals, 57, 104114.CrossRefGoogle Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331363 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London, UK.CrossRefGoogle Scholar
Farmer, V.C. & Russell, J.D. (1967) Infrared absorption spectrometry in clay studies. Clays and Clay Minerals, 15, 121142.CrossRefGoogle Scholar
Fersi, C., Gzara, L. & Dhahbi, M. (2005) Treatment of textile effluents by membrane technologies. Desalination, 185, 399409.CrossRefGoogle Scholar
Freundlich, H.M.F. (1906) Over the adsorption in solution. Journal of Physical Chemistry, 57, 385471.Google Scholar
Gahr, F., Hermanutz, F. & Oppermann, W. (1994) Ozonation – an important technique to comply with new German laws for textile wastewater treatment. Water Science and Technology, 30, 255263.CrossRefGoogle Scholar
Gemeay, A.H. (2002) Adsorption characteristics and the kinetics of the cation exchange of rhodamine-6 G with Na+-montmorillonite. Journal of Colloid and Interface Science, 251, 235241.CrossRefGoogle Scholar
Gombert, P., Biaudet, H., de Seze, R., Pandard, P. & Carré, J. (2017) Toxicity of fluorescent tracers and their degradation byproducts. International Journal of Speleology, 46, 2331.CrossRefGoogle Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R. & Woodhams, F.W.D. (1976) A Mössbauer and I.R. spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 5359.CrossRefGoogle Scholar
Grauer, Z., Malter, A.B., Yariv, S. & Avnir, D. (1987) Sorption of rhodamine B by montmorillonite and laponite. Colloids and Surfaces, 25, 4165.CrossRefGoogle Scholar
Gray, J.I., Irvine, D.M. & Kakuda, Y (1979) Nitrates and N-nitrosamines in cheese. Journal of Food Protection, 42, 263272.CrossRefGoogle ScholarPubMed
Gumel, S.M., Usman, M.T. & Ado, A. (2015) Colouration industry wastewater treatments in Nigeria – hazard and treatment: a review. International Journal of Chemical and Biomolecular Science, 1, 2733.Google Scholar
Harward, M.E., Carstea, D.D. & Sayegh, A.H. (1969) Properties of vermiculites and smectites: expansion and collapse. Clays and Clay Minerals, 16, 437447.CrossRefGoogle Scholar
Hetzel, F. & Doner, H.E. (1993) Some colloidal properties of beidellite: comparison with low and high charge montmorillonites. Clays and Clay Minerals, 41, 453460.CrossRefGoogle Scholar
Ho, Y.S. & McKay, G. (1999) Batch lead (II) removal from aqueous solution by peat: equilibrium and kinetics. Process Safety and Environmental Protection, 77, 165173.CrossRefGoogle Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift für anorganische und allgemeine Chemie, 262, 9599.CrossRefGoogle Scholar
Hou, M.F., Mac, C.X., Zhang, W.D., Tang, X.Y., Fan, Y.N. & Wan, H.F. (2011) Removal of rhodamine B using iron-pillared bentonite. Journal of Hazardous Materials, 186, 11181123.CrossRefGoogle ScholarPubMed
Hubert, F., Caner, L., Meunier, A. & Lanson, B. (2009) Advances in characterization of soil clay mineralogy using X-ray diffraction: from decomposition to profile fitting. European Journal of Soil Science, 60, 10931105.CrossRefGoogle Scholar
Kah, M. & Brown, C.D. (2006) Adsorption of ionisable pesticides in soils. Pp. 149217 in: Reviews of Environmental Contamination and Toxicology (Ware, G.W. et al. , editors). Springer, New York, NY, USA.CrossRefGoogle Scholar
Kakali, G., Perraki, T., Tsivilis, S. & Badogiannis, E. (2001) Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20, 7380.CrossRefGoogle Scholar
Karmous, M.S., Ben Rhaiem, H., Robert, J.L., Lanson, B. & Ben Haj Amara, A. (2009) Charge location effect on the hydration properties of synthetic saponite and hectorite saturated by Na+, Ca2+ cations: XRD investigation. Applied Clay Science, 46, 4350.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Ufer, K. & Meyer, F.M. (2002) Comparison of methods for the quantification of montmorillonite in bentonites. Applied Clay Science, 22, 145151.CrossRefGoogle Scholar
Khan, T.A., Dahiya, S. & Ali, I. (2012) Use of kaolinite as adsorbent: equilibrium, dynamics and thermodynamic studies on the adsorption of rhodamine B from aqueous solution. Applied Clay Science, 69, 5866.CrossRefGoogle Scholar
Klika, Z., Weissmannová, H., Čapková, P. & Pospíšil, M. (2004) The rhodamine B intercalation of montmorillonite. Journal of Colloid and Interface Science, 275, 243250.CrossRefGoogle ScholarPubMed
Kloprogge, J.T. (2006) Spectroscopic studies of synthetic and natural beidellites: a review. Applied Clay Science, 31, 165179.CrossRefGoogle Scholar
Kloprogge, J.T. & Frost, R.L. (1999) Infrared emission spectroscopy of Al-pillared beidellite. Applied Clay Science, 15, 431445.CrossRefGoogle Scholar
Kloprogge, J.T., Jansen, J.B.H. & Geus, J.W. (1990) Characterization of synthetic Na-beidellite. Clays and Clay Minerals, 38, 409414.CrossRefGoogle Scholar
Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E. & Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579599.CrossRefGoogle Scholar
Krám, P., Hruška, J., Wenner, B., Driscoll, C. & Johnson, C. (1997) The biogeochemistry of basic cations in two forest catchments with contrasting lithology in the Czech Republic. Biogeochemistry, 37, 173202.CrossRefGoogle Scholar
Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 246 in: Layer Charge Characteristics of 2:1 Silicate Clay Minerals (Mermut, A.R., editor). CMS Workshop Lectures, 6. The Clay Minerals Society, Boulder, CO, USA.Google Scholar
Laird, D.A. (2006) Influence of layer charge on swelling of smectites. Applied Clay Science, 34, 7487.CrossRefGoogle Scholar
Langmuir, I. (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 22212295.CrossRefGoogle Scholar
Li, L., Liu, S. & Zhu, T. (2010). Application of activated carbon derived from scrap tires for adsorption of rhodamine B. Journal of Environmental Sciences, 22, 12731280.CrossRefGoogle ScholarPubMed
Lim, C.H. & Jackson, M.L. (1986) Expandable phyllosilicate reactions with lithium on heating. Clays and Clay Minerals, 34, 346352.CrossRefGoogle Scholar
Liu, J., Wu, P., Yang, S., Rehman, S., Ahmed, Z., Zhu, N. et al. (2020) A photo-switch for peroxydisulfate non-radical/radical activation over layered CuFe oxide: rational degradation pathway choice for pollutants. Applied Catalysis B: Environmental, 261, 118232.CrossRefGoogle Scholar
López Arbeloa, F., Chaudhuri, R., López Arbeloa, T. & López Arbeloa, I. (2002) Aggregation of rhodamine 3B adsorbed in Wyoming montmorillonite aqueous suspensions. Journal of Colloid and Interface Science, 246, 281287.CrossRefGoogle ScholarPubMed
López Arbeloa, F., Tapia Estevez, M.J., López Arbeloa, T. & López Arbeloa, I. (1997) Spectroscopic study of the adsorption of rhodamine 6 G on clay minerals in aqueous suspensions. Clay Minerals, 32, 97106.CrossRefGoogle Scholar
Ma, L., Xi, Y., He, H., Ayoko, G.A., Zhu, R. & Zhu, J. (2016) Efficiency of Fe-montmorillonite on the removal of rhodamine B and hexavalent chromium from aqueous solution. Applied Clay Science, 120, 915.CrossRefGoogle Scholar
Madejová, J., Komadel, P. & Čičel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319326.CrossRefGoogle Scholar
Maes, A., Stul, M.S. & Cremers, A. (1979) Layer charge–cation exchange capacity relationships in montmorillonite. Clays and Clay Minerals, 27, 387392.CrossRefGoogle Scholar
Mermut, A.R., Ghebre-Egziabhier, K. & Arnaud, R.J.S. (1984) The nature of smectites in some fine textured lacustrine parent materials in southern Saskatchewan. Canadian Journal of Soil Science, 64, 481494.CrossRefGoogle Scholar
Nam, K., Kim, J.Y. & Oh, D.I. (2003) Effect of soil aggregation on the biodegradation of phenanthrene aged in soil. Environmental Pollution, 121, 147151.CrossRefGoogle ScholarPubMed
Pai, C.W., Wang, M.K., Wang, W.M. & Houng, K.H. (1999) Smectites in iron rich calcareous soil and black soils of Taiwan. Clays and Clay Minerals, 47, 389398.Google Scholar
Pandurangappa, M. & Kumar, K.S. (2011) Micellar mediated trace level mercury quantification through the rhodamine B hydrazide spirolactam ring opening process. Analytical Methods, 3, 715723.CrossRefGoogle ScholarPubMed
Panneer Selvam, P., Preethi, S., Basakaralingam, P., Thinakaran, N., Sivasamy, A. & Sivanesan, S. (2008) Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. Journal of Hazardous Materials, 155, 3944.CrossRefGoogle Scholar
Raha, S., Ivanov, I., Quazi, N.H. & Bhattacharya, S. (2009) Photo-stability of rhodamine-B/montmorillonite nanopigments in polypropylene matrix. Applied Clay Science, 42, 661666.Google Scholar
Sato, T., Watanabe, T. & Otsuka, R. (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40, 103113.CrossRefGoogle Scholar
Sayegh, A.H., Harward, M.E. & Knox, E.G. (1965) Humidity and temperature interaction with respect to K-saturated expanding clay minerals. American Mineralogist, 50, 490495.Google Scholar
Schnetzer, F., Johnston, C.T., Premachandra, G.S., Giraudo, N., Schuhmann, R., Thissen, P. & Emmerich, K. (2017) Impact of intrinsic structural properties on the hydration of 2:1 layer silicates. ACS Earth and Space Chemistry, 1, 608620.CrossRefGoogle ScholarPubMed
Schuttlefield, J.D., Cox, D. & Grassian, V.H. (2007) An investigation of water uptake on clays minerals using ATR-FTIR spectroscopy coupled with quartz crystal microbalance measurements. Journal of Geophysical Research, 112, D21303.CrossRefGoogle Scholar
Shakir, K., Elkafrawy, A.F., Ghoneimy, H.F., Beheir, S.G.E. & Refaat, M. (2010) Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. Water Research, 44, 14491461.CrossRefGoogle ScholarPubMed
Sips, R. (1948) The structure of a catalyst surface. Journal of Chemical Physics, 16, 490495.CrossRefGoogle Scholar
Steinheimer, T.R. & Johnson, S.M. (1986) The investigation of the possible formation of diethylnitrosamine resulting from the use of rhodamine WT dye as a tracer in river waters. Pp. 3749 in: Selected Papers in the Hydrologic Sciences (Subitzky, S., editor). US Geological Survey, Reston, VA, USA.Google Scholar
Suquet, H., de la Calle, C. & Pezerat, H. (1975) Swelling and structural organization of saponite. Clays and Clay Minerals, 23, 19.CrossRefGoogle Scholar
Suquet, H., Malard, C. & Pezerat, H. (1987) Structure et propriétés d'hydratation des nontronites. Clay Minerals, 22, 157167.CrossRefGoogle Scholar
Tapia Estevez, M.J., López Arbeloa, F., López Arbeloa, T. & López Arbeloa, I. (1993) Absorption and fluorescence properties of rhodamine 6 G adsorbed on aqueous suspensions of Wyoming montmorillonite. Langmuir, 9, 36293634.CrossRefGoogle Scholar
Vantelon, D., Pelletier, M., Michot, L.J., Odile, B. & Thomas, F. (2001) Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region. Clay Minerals, 36, 369379.CrossRefGoogle Scholar
Warren, N., Allana, I.J., Carter, J.E., House, W.A. & Parker, A. (2003) Pesticides and other micro-organic contaminants in freshwater sedimentary environments: a review. Applied Geochemistry, 18, 159194.CrossRefGoogle Scholar
Xu, C., Wu, H. & Gu, F.L. (2014) Efficient adsorption and photocatalytic degradation of rhodamine Bunder visible light irradiation over BiOBr/montmorillonite composites. Journal of Hazardous Materials, 275, 185192.CrossRefGoogle Scholar
Yang, S., Duan, X., Liu, J., Wu, P., Li, C., Dong, X., Zhu, N. & Dionysiou, D.D. (2020a) Efficient peroxymonosulfate activation and bisphenol A degradation derived from mineral-carbon materials: key role of double mineral-templates. Applied Catalysis B: Environmental, 267, 118701.CrossRefGoogle Scholar
Yang, S., Huang, Z., Wu, P., Li, Y., Dong, X., Li, C. et al. (2020b) Rapid removal of tetrabromobisphenol A by α-Fe2O3-x@graphene@montmorillonite catalyst with oxygen vacancies through peroxymonosulfate activation: role of halogen and α-hydroxyalkyl radicals. Applied Catalysis B: Environmental, 260, 118129.CrossRefGoogle Scholar
Yang, S., Wu, P., Liu, J., Chen, M., Ahmed, Z. & Zhu, N. (2018) Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite. Chemical Engineering Journal, 350, 484495.CrossRefGoogle Scholar
Yaseen, D.A. & Scholz, M. (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16, 11931226.CrossRefGoogle Scholar
Ye, Q., Huang, Z., Wu, P., Wu, J., Ma, J., Liu, C. et al. (2020) Promoting the photogeneration of hydrochar reactive oxygen species based on FeAl layered double hydroxide for diethyl phthalate degradation. Journal of Hazardous Materials, 388, 122120.CrossRefGoogle ScholarPubMed