Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T06:32:31.839Z Has data issue: false hasContentIssue false

Structure of poorly-ordered aluminosilicates

Published online by Cambridge University Press:  09 July 2018

M. A. Wilson
Affiliation:
CSIRO Division of Fossil Fuels, PO Box 136, North Ryde, NSW 2113
S. A. McCarthy
Affiliation:
CSIRO Division of Fossil Fuels, PO Box 136, North Ryde, NSW 2113
P. M. Fredericks
Affiliation:
BHP Central Research Laboratories, PO Box 188, Wallsend, NSW 2287, Australia

Abstract

The structure of synthetic aluminosilicates prepared at pH 6 has been investigated by 29Si and 27Al high-resolution solid-state nuclear magnetic resonance (NMR) spectroscopy. Fourier transform infrared (FTIR) spectroscopy and electron microscopy have also been used to characterize the products. The amount of Si and Al in protoimogolite, disordered allophane and other structures has been measured. There is a fair correlation between the intensity of the 349 cm−1 band in the FTIR spectra and the proportion by weight of protoimogolite Si measured by NMR. It is shown that disordered allophanes have similar structures to those proposed by van Reeuwijk and de Villiers (Soil Sci. Soc. Am. Proc. 32 (1968) 238–240), i.e. octahedral Al surrounding a tetrahedral core. Moreover, it is clear that at high Al:Si ratios (⩾1:1), protoimogolite can compete with disordered allophane precursors for aluminum. The driving forces for formation of protoimogolite rather than allophane appear to be long range Al-Al repulsive forces through oxygen.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alma, N.C.M., Samoson, A., Lippmaa, E. & Hays, G.R. (1984) Characterization of synthetic dioctahedral layer silicates by solid state 29Si and 27Al n.m.r. Anal. Chem. 56, 729733.CrossRefGoogle Scholar
Akitt, J.W. & Farthing, A. (1981) Aluminium-27 nuclear magnetic resonance studies of the hydrolysis of aluminium (III). Part 4. Hydrolysis using sodium carbonate. J. Chem. Soc. Dalton Trans. 16171623.CrossRefGoogle Scholar
Barron, P.F., Wilson, M.A., Campbell, A.S. & Frost, R.L. (1982) Detection of imogolite in soils using solid state 29Si NMR. Nature 299, 616618.Google Scholar
Bennett, J.M., Blackwell, C.S. & Cox, D.E. (1983) High resolution silicon-29 nuclear magnetic resonance and neutron powder diffraction study of Na-A zeolite. Lowenstein's rule vindicated. J. Phys. Chem. 87, 37833790.Google Scholar
Campbell, A.S., Young, A.W., Livingston, L.G., Wilson, M.A. & Walker, T.W. (1977) Characterization of poorly-ordered aluminosilicates in a vitric Andosol from New Zealand. Soil Sci. 123, 362368.Google Scholar
Cloos, P.A., Herbillon, A. & Echeverria, J. (1968) Allophane like synthetic silico-aluminas: phosphate adsorption and availability. Trans. 9th Int. Cong. Soil Sci., Adelaide, II, 733743.Google Scholar
Cloos, P.A., Leonard, J., Moreau, J.P., Herbillon, A. & Fripiat, J.J. (1969) Structural organisation in amorphous silico-alumina clays. Clay Miner. 17, 279287.CrossRefGoogle Scholar
Cradwick, P.D.G., Farmer, V.C., Russell, J.D., Masson, C.R., Wada, K. & Yoshinaga, N. (1972) Imogolite, a hydrated aluminium silicate of tubular structure. Nature 240, 187189.Google Scholar
De Jong, B.H., Schramm, C.M. & Parziale, V.E. (1983) Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions. IV. Aluminium coordination in glasses and aqueous solutions and comments on the aluminium avoidance principle. Geochim. Cosmochim. Acta 47, 12231236.Google Scholar
Farmer, V.C. (1982) Significance of the presence of allophane and imogolite in podzol Bs horizons for podzolization mechanisms. A review. Soil Sci. Pl. Nutr. 28, 571578.Google Scholar
Farmer, V.C. & Fraser, A.R. (1978) Synthetic imogolite, a tubular hydroxyaluminium silicate. Proc. Int. Clay Conf. Oxford, 547553.Google Scholar
Farmer, V.C., Fraser, A.R., Russell, J.D. & Yoshinaga, N. (1977a) Recognition of imogolite structures in allophanic clays by infra-red spectroscopy. Clay Miner. 12, 5557.Google Scholar
Farmer, V.C., Fraser, A.R. & Tait, J.M. (1977b) Synthesis of imogolite. A tubular aluminium silicate polymer. Chem. Commun. 462463.Google Scholar
Farmer, V.C., Fraser, A.R. & Tait, J.M. (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy. Geochim. Cosmochim. Acta 43, 14171420.CrossRefGoogle Scholar
Farmer, V.C., Russell, J.D. & Berrow, M.L. (1980) Imogolite and proto-imogolite allophane in spodic horizons: evidence for a mobile aluminium silicate complex in podzol formation. J. Soil. Sci. 31, 673684.Google Scholar
Farmer, V.C., Adams, M.J., Fraser, A.R. & Palmieri, F. (1983) Synthetic imogolite: properties, synthesis and possible applications. Clay Miner. 18, 459472.CrossRefGoogle Scholar
Fieldes, M. (1955) Clay mineralogy of New Zealand soils. Part II. Allophane and related mineral colloids. N.Z.J. Sci. Technol. B37, 336350.Google Scholar
Fieldes, M. (1966) The nature of allophane in soils. Part I. Significance of structural randomness in pedogenesis. N.Z.J. Sci. 9, 599607.Google Scholar
Freude, D., Frolich, T., Pfeifer, H. & Scheler, G. (1983) N.m.r. studies of aluminium in zeolites. Zeolites 3, 171177.Google Scholar
Goodman, B.A., Russell, J.D., Montez, B., Oldfield, E. & Kirkpatrick, R.J. (1985) Structural studies of imogolite and allophanes by Al-27 and Si-29 N.M.R. spectroscopy. Phys. Chem. Miner. 12, 342346.Google Scholar
Granquist, W.T. & Pollack, S.S. (1967) Clay mineral synthesis. II. A randomly interstratified aluminium montmorillonoid. Am. Miner. 52, 212226.Google Scholar
Greensfelder, B.S., Voge, H.H. & Good, G.M. (1949) Catalytic and thermal cracking of pure hydrocarbons. Ind. Eng. Chem. 41, 25732584.Google Scholar
Grim, R.E. (1968) Clay Mineralogy (2nd Edition), pp. 3455. McGraw-Hill, New York.Google Scholar
Kirkman, J.H. (1975) Possible structure of two allophanes derived from rhyolitic tephra. Clay Miner. 10, 475478.Google Scholar
Kitagawa, Y. (1974) Dehydration of allophane and its structural formula. Am. Miner. 59, 10941098.Google Scholar
Leonard, A., Suzuki, S., Fripiat, J. & De Kimpe, C. (1964) Structure and properties of amorphous silicoaluminas. 1. Structure from X-ray fluorescence spectroscopy and infra-red spectroscopy. J. Phys. Chem. 68, 26082617.CrossRefGoogle Scholar
Lippmaa, E., Magi, M., Samoson, A., Engelhardt, B. & Grimmer, A.R. (1980) Structural studies of silicates by solid state high resolution 29Si n.m.r. J. Am. Chem. Soc. 102, 48894893.CrossRefGoogle Scholar
Lipsicas, M., Raythatha, R.H., Pinnavaia, T.J., Johnson, I.D. Giese, R.F., Costanzo, P.M. & Robert, J.-L. (1984) Silicon and aluminium site distributions in 2:1 layered silicate clays. Nature 309, 604607.Google Scholar
Loewenstein, W. (1954) The distribution of aluminium in the tetrahedra of silicates and aluminates. Am. Miner. 39, 9296.Google Scholar
Melchior, M.T., Vaughan, D.E.W., Jarman, R.H. & Jacobson, A.J. (1982) The characterization of Si-Al ordering in A-type zeolite (ZK4) by 29Si-n.m.r. Nature 298, 455456.Google Scholar
Opella, S.J. & Frey, M.H. (1979) Selection of non-protonated carbon resonances in solid state nuclear magnetic resonance. J. Am. Chem. Soc. 101, 58545856.Google Scholar
Parfitt, R.L., Furkert, R.J. & Henmi, T. (1980) Identification and structure of two types of allophane from volcanic ash soils and tephra. Clays Clay Miner. 28, 328334.Google Scholar
Parfitt, R.L. (1981) Chemical properties of variable charge soils. Pp. 167179 in: Soils with Variable Charge. N.Z. Soil Bureau, Wellington, New Zealand.Google Scholar
Tait, J.M., Yoshinaga, N. & Mitchell, B.D. (1978) The occurrence of imogolite in some Scottish soils. Soil Sci. Pl. Nutr. 24, 145151.Google Scholar
Thomas, C.L. (1949) Chemistry of cracking catalysts. Ind. Eng. Chem. 41, 25642573.Google Scholar
Van Der Gaast, S.J., Wada, K., Wada, S.I. & Kakuto, Y. (1985) Small angle X-ray powder diffraction, morphology and structure of allophane and imogolite. Clays Clay Miner. 33, 237243.Google Scholar
Van Olphen, H. (1971) Amorphous clay materials. Science 171, 9192.Google Scholar
Van Reeuwijk, L.P. & De Villiers, J.M. (1968) Potassium fixation by amorphous aluminosilica gels. Soil. Sci. Soc. Am. Proc. 32, 238240.CrossRefGoogle Scholar
Van Reeuwijk, L.P. & De Villiers, J.M. (1970) A model system for allophane. Agrochemophysica 2, 7781.Google Scholar
Wada, K. & Kubo, H. (1975) Precipitation of amorphous aluminosilicates from solutions containing monomeric silica and aluminium ions. J. Soil. Sci. 26, 100111.Google Scholar
Wada, S. & Wada, K. (1980) Formation, composition and structure of hydroxy-aluminosilicates. J. Soil Sci. 31, 457467.CrossRefGoogle Scholar
Wada, S. & Wada, K. (1981) Reaction between aluminate ions and orthosilicic acid in dilute, alkaline to neutral solutions. Soil Sci. 132, 267273.Google Scholar
Wada, K. & Yoshinaga, N. (1969) The structure of “imogolite”. Am. Miner. 54, 5071.Google Scholar
Wada, S., Eto, A. & Wada, K. (1979) Synthetic allophane and imogolite. J. Soil Sci. 30, 347355.CrossRefGoogle Scholar
Wilson, M.A. & McCarthy, S.A. (1985) Long range effects of the aluminium avoidance principle. Anal Chem. 57, 27332735.Google Scholar
Wilson, M.A., Barron, P.F. & Campbell, A.S. (1984a) Detection of aluminium co-ordination in soils and clay fractions using 27Al magic angle spinning n.m.r. J. Soil. Sci. 35, 201207.Google Scholar
Wilson, M.A., Pugmire, R.J., Karas, J., Alemany, L.B., Woolfenden, W.R., Grant, D.M. & Given, P.H. (1984b) Carbon distribution in coals and coal macerals by cross polarization magic angle spinning carbon-13 nuclear magnetic resonance spectrometry. Anal. Chem. 56, 933943.Google Scholar
Yoshinaga, N. & Aomine, A. (1962) Imogolite in some andosols. Soil Sci. Pl. Nutr. 8, 2229.Google Scholar
Young, A.W., Campbell, A.S. & Walker, T.W. (1980) Allophane isolated from a podsol developed on a non-vitric parent material. Nature 284, 4648.Google Scholar