Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T23:54:50.742Z Has data issue: false hasContentIssue false

Structural transformation of kaolin as an active matrix for the in situ synthesis of zeolite Y

Published online by Cambridge University Press:  23 December 2020

Jessyka Padilla*
Affiliation:
Universidad Industrial de Santander, Carrera 27 calle 9 Bucaramanga, Colombia
Alexander Guzman
Affiliation:
ECOPETROL S.A. Instituto Colombiano del Petróleo, Piedecuesta, Colombia
Daniel Molina V
Affiliation:
Universidad Industrial de Santander, Carrera 27 calle 9 Bucaramanga, Colombia
Juan Carlos Poveda-Jaramillo
Affiliation:
Universidad Industrial de Santander, Carrera 27 calle 9 Bucaramanga, Colombia

Abstract

To produce an optimized matrix for the in situ crystallization of zeolite Y, a commercial kaolin chemically treated with NaOH solution at 97°C for 24 h and thermally transformed from 750 to 1100°C was studied. The kaolin calcined at 750°C has 20% more reactive tetrahedral aluminium species for the synthesis of zeolite Y than kaolin calcined at 865°C. The kaolin calcined at 1000°C has amorphous silica zones that may be extracted using caustic solution; this increases the surface area by a factor of 16 and generates mesopores ~5 nm in diameter. These structural changes in the calcined and treated kaolins were combined to prepare microspheres of the mesoporous matrix, upon which well-dispersed crystals of zeolite Y crystallized.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: A. Turkmenoglu

References

Andersson, P.O.F., Pirjamali, M., Järås, S.G. & Boutonnet-Kizling, M. (1999) Cracking catalyst additives for sulfur removal from FCC gasoline. Catalysis Today, 53, 565573.CrossRefGoogle Scholar
Ayele, L., Pérez-Pariente, J., Chebude, Y. & Díaz, I. (2016) Conventional versus alkali fusion synthesis of zeolite A from low grade kaolin. Applied Clay Science, 132–133, 485490.CrossRefGoogle Scholar
Chakravorty, A.K., Ghosh, D.K. & Kundu, P. (1986) Structural characterization of the spinel phase in the kaolin–mullite reaction series through lattice energy. Journal of the American Ceramic Society, 66, 610612.Google Scholar
Clough, M., Pope, J.C., Tan, L., Lin, X., Komvokis, V., Pan, S.S. & Yilmaz, B. (2017) Nanoporous materials forge a path forward to enable sustainable growth: Technology advancements in fluid catalytic cracking. Microporous and Mesoporous Materials, 254, 4558.CrossRefGoogle Scholar
Condon, J.B. (2006) Surface Area and Porosity Determinations by Physisorption. P. in.: 1st edition. Elsevier Science, Amsterdam, The Netherlands, 296 pp.Google Scholar
Degnan, T.F., Chitnis, G.K. & Schipper, P.H. (2000) History of ZSM-5 fluid catalytic cracking additive development at Mobil. Microporous and Mesoporous Materials, 35–36 245252.CrossRefGoogle Scholar
Du, J., Morris, G., Pushkarova, R.A. & Smart, R.S.C. (2010) Effect of surface structure of kaolinite on aggregation, settling rate, and bed density. Langmuir, 26, 1322713235.CrossRefGoogle ScholarPubMed
Feng, H., Li, C. & Shan, H. (2009) Effect of calcination temperature of kaolin microspheres on the in situ synthesis of ZSM-5. Catalysis Letters, 129, 7178.CrossRefGoogle Scholar
Feng, R., Bai, P., Liu, S., Zhang, P., Liu, X., Yan, Z., Zhang, Z. & Gao, X. (2014) The application of mesoporous alumina with rich Brönsted acidic sites in FCC catalysts. Applied Petrochemical Research, 4, 367372.CrossRefGoogle Scholar
Garcia, G., Cabrera, S., Hedlund, J. & Mouzon, J. (2018) Selective synthesis of FAU-type zeolites. Journal of Crystal Growth, 489, 3641.CrossRefGoogle Scholar
Guo, S., Yu, Z., Chen, Y. & Chen, X. (2011) In situ synthesis of zeolite NaKL in highly-enriched spinel matrix. Pp. 1045–1048 in: Advanced Materials Research. Trans Tech Publications, Zurich, Switzerland.Google Scholar
Han, Y., Liu, W. & Chen, J. (2016) DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces. Applied Surface Science, 370, 403409.CrossRefGoogle Scholar
Heller-Kallai, L. & Lapides, I. (2007) Reactions of kaolinites and metakaolinites with NaOH-comparison of different samples (Part 1). Applied Clay Science, 35, 99107.CrossRefGoogle Scholar
Hensen, E.J.M., Poduval, D.G., Degirmenci, V., Ligthart, D.A.J.M., Chen, W., Rigutto, M.S. & Veen, J.A.R. Van. (2012) Acidity Characterization of Amorphous Silica − Alumina. The Journal of Physical Chemistry C, 116, 2141621429.CrossRefGoogle Scholar
Johnson, E.B.G. & Arshad, S.E. (2014) Hydrothermally synthesized zeolites based on kaolinite: A review. Applied Clay Science, 97–98, 215221.CrossRefGoogle Scholar
Kumar, S., Panda, A.K. & Singh, R.K. (2013) Preparation and characterization of acids and alkali treated kaolin clay. Bulletin of Chemical Reaction Engineering and Catalysis, 8, 6169.CrossRefGoogle Scholar
Lee, S., Kim, Y.J. & Moon, H.S. (1999) Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. Journal of the American Ceramic Society, 82, 28412848.CrossRefGoogle Scholar
Leonard, A.J. (1977) Structural Analysis of the Transition Phases in the Kaolinite-Mullite Thermal Sequence. Journal of the American Ceramic Society, 60, 3743.CrossRefGoogle Scholar
Li, N., Li, T., Liu, H., Yue, Y. & Bao, X. (2017) A novel approach to synthesize in-situ crystallized zeolite/kaolin composites with high zeolite content. Applied Clay Science, 144, 150156.CrossRefGoogle Scholar
Lin, L., Chao, K., Ling, Y., Hwang, J. & Hou, L. (1997) Characterization of the Effects of Vanadium Traps in Cracking Catalysts by Imaging Secondary Ion Mass Spectrometry and Microactivity Test. Journal of Chinese Chemical Society, 44, 553558.CrossRefGoogle Scholar
Liu, H., Zhao, H., Gao, X. & Ma, J. (2007) A novel FCC catalyst synthesized via in situ overgrowth of NaY zeolite on kaolin microspheres for maximizing propylene yield. Catalysis Today, 125, 163168.CrossRefGoogle Scholar
Liu, X., Yan, Z., Wang, H. & Luo, Y. (2003) In-situ synthesis of NaY zeolite with coal-based kaolin. Journal of Natural Gas Chemistry, 12, 6370.Google Scholar
Liu, X., Liu, X. & Hu, Y. (2015) Investigation of the thermal behaviour and decomposition kinetics of kaolinite. Clay Minerals, 50, 199209.CrossRefGoogle Scholar
Low, I.M. & McPherson, R.R. (1988) The structure and composition of Al-Si spinel. Journal of Materials Science Letters, 7, 11961198.CrossRefGoogle Scholar
Lutz, W. (2014) Zeolite Y: Synthesis, Modification, and properties – a case revisited. Advances in Materials Science and Engineering, 2014, 120.CrossRefGoogle Scholar
Mackenzie, K.J.D. & Smith, M.E. (2013) Multinuclear Solid-State NMR of Inorganic Materials. Pergamon Materials Series. Pergamon Press, Oxford, UK, 748 pp.Google Scholar
Madani, A., Aznar, A., Sanz, J. & Serratosa, J.M. (1990) 29Si and 27Al NMR study of zeolite formation from alkali-leached kaolinites. Influence of thermal preactivation. Journal of Physical Chemistry, 94, 760765.CrossRefGoogle Scholar
Magee, J.S. & Mitchell, M.M.J. (1993) Fluid Catalytic Cracking: Science and Technology. Elsevier Science Publishers B.V., Amsterdam, The Netherlands.Google Scholar
Mägi, M., Lippmaa, E., Samoson, A., Engelhardt, G. & Grimmer, A.R. (1984) Solid-state high-resolution silicon-29 chemical shifts in silicates. Journal of Physical Chemistry, 88, 15181522.CrossRefGoogle Scholar
Man, P.P., Peltre, M.J. & Barthomeuf, D. (1990) Nuclear magnetic resonance study of the dealumination of an amorphous silica-alumina catalyst. Journal of the Chemical Society, Faraday Transactions, 86, 15991602.CrossRefGoogle Scholar
Massiot, D. (1995) 27Al and 29Si MAS NMR study of kaolinite thermal decomposition by controlled rate thermal analysis. Journal of American Ceramic Society, 78, 29402944.CrossRefGoogle Scholar
Okada, K., ŌTsuka, N. & Ossaka, J. (1986) Characterization of spinel phase formed in the kaolin-mullite thermal sequence. Journal of the American Ceramic Society, 69, C-251-C-253.CrossRefGoogle Scholar
Pan, S.S., Lin, L.T.X., Komvokis, V., Spann, A., Clough, M. & Yilmaz, B. (2015) Nanomaterials fueling the world. Pp. 318 in: ACS Symposium Series (Louise, J. & Bashir, L., editors). American Chemical Society, Washington, DC, USA.Google Scholar
Patrylak, L., Likhnyovskyi, R., Vypyraylenko, V., Leboda, R. & Skubiszewska-zi, J. (2001) Adsorption properties of zeolite-containing microspheres and FCC catalysts based on Ukrainian kaolin. Adsorption Science & Technology, 19, 525540.CrossRefGoogle Scholar
Peng, H., Vaughan, J. & Vogrin, J. (2018) The effect of thermal activation of kaolinite on its dissolution and re-precipitation as zeolites in alkaline aluminate solution. Applied Clay Science, 157, 189197.CrossRefGoogle Scholar
Pereira, P.M., Ferreira, B.F., Oliveira, N.P., Nassar, E.J., Ciuffi, K.J., Vicente, M.A., Trujillano, R., Rives, V., Gil, A., Korili, S. & de Faria, E.H. (2018) Synthesis of zeolite A from metakaolin and its application in the adsorption of cationic dyes. Applied Sciences, 8, 608.CrossRefGoogle Scholar
Plançon, A., Giese, R.F. & Snyder, R. (1988) The Hinckley Index for kaolinites. Clay Minerals, 23, 249260.CrossRefGoogle Scholar
Ptáček, P., Frajkorová, F., Šoukal, F. & Opravil, T. (2014) Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technology, 264, 439445.CrossRefGoogle Scholar
Qiang, L., Ying, Z., Zhijun, C., Wei, G. & Lishan, C. (2010) Influence of synthesis parameters on the crystallinity and Si/Al ratio of NaY zeolite synthesized from kaolin. Petroleum Science, 403409.Google Scholar
Rocha, J. & Klinowski, J. (1990) Solid-State NMR Studies of the Structure and Reactivity of Metakaolinite. Angewandte Chemie International Edition in English, 29, 553554.CrossRefGoogle Scholar
Rouquerol, F., Rouquerol, J. & S, K.. (1998) Adsorption by Powders & Porous Solids: Principios, Methodology and Applications. Academic Press, London, UK, 485 pp.Google Scholar
Sadeghbeigi, R. (2012) Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units, 3rd edn. Butterworth Heinemann, Oxford, UK, 352 pp.Google Scholar
Salagre, P., Fierro, J.L.G., Medina, F. & Sueiras, J.E. (1996) Characterization of nickel species on several γ-alumina supported nickel samples. Journal of Molecular Catalysis A: Chemical, 106, 125134.CrossRefGoogle Scholar
Sonuparlak, B., Sarikaya, M. & Aksay, I.A. (1987) Spinel phase formation during the 980°C exothermic reaction in the kaolinite-to-mullite reaction series. Journal of the American Ceramic Society, 70, 837842.CrossRefGoogle Scholar
Sousa-Aguiar, E.F., Trigueiro, F.E. & Zotin, F.M.Z. (2013) The role of rare earth elements in zeolites and cracking catalysts. Catalysis Today, 218–219, 115122.CrossRefGoogle Scholar
Sperinck, S., Raiteri, P., Marks, N. & Wright, K. (2011) Dehydroxylation of kaolinite to metakaolin—a molecular dynamics study. Journal of Materials Chemistry, 21, 21182125.CrossRefGoogle Scholar
Wang, H., Li, C. & Peng, Z. (2011) Characterization and thermal behavior of kaolin. Journal of Thermal Analysis and Calorimetry, 105, 157160.CrossRefGoogle Scholar
Wei, B., Liu, H., Li, T., Cao, L., Fan, Y. & Bao, X. (2010) Natural rectorite mineral: a promising substitute of kaolin for in situ synthesis of fluid catalytic cracking catalyst. American Institute of Chemical Engineers Journal, 56, 29132922.CrossRefGoogle Scholar
Woltermann, G.M., Magee, J.S. & Griffith, S.D. (1993) Fluid catalytic cracking: science and technology. Pp. 105144 in: Studies in Surface Science and Catalysis (Magee, J.S. & Mitchell, M.M.J., editors). Elsevier Science Publishers B.V., Amsterdam, The Netherlands.Google Scholar
Xu, M., Cheng, M. & Bao, X. (2000) Growth of ultrafine zeolite Y crystals on metakaolin microspheres. Chemical Communication, 18731874.CrossRefGoogle Scholar
Zhang, Y. & Xiong, C. (2012a) A new way to enhance the porosity and Y-faujasite percentage of in situ crystallized FCC catalyst-Supplement info. Catalysis Science & Technology, 2, 606612.CrossRefGoogle Scholar
Zhang, Y. & Xiong, C. (2012b) A new way to enhance the porosity and Y-faujasite percentage of in situ crystallized FCC catalyst. Catalysis Science & Technology, 2, 606612.CrossRefGoogle Scholar
Zheng, S.-Q., He, L.-J., Ren, S., Yu, H.-X. & Zhu, W. (2015) A novel FCC catalyst based on a porous composite material synthesized via an in situ technique. Kemija u industriji, 64, 603610.CrossRefGoogle Scholar
Zheng, S., Sun, S., Zhang, Z., Gao, X. & Xu, X. (2005a) Effect of properties of calcined microspheres of kaolin on the formation of NaY zeolite. Bulletin of the Catalysis Society of India, 4, 1217.Google Scholar
Zheng, S., Sun, S., Wang, Z., Gao, X. & Xu, X. (2005b) Suzhou kaolin as a FCC catalyst. Clay minerals, 40, 303310.CrossRefGoogle Scholar