Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T22:25:51.906Z Has data issue: false hasContentIssue false

Structural study of Zn-exchanged natural clinoptilolite using powder XRD and positron annihilation data

Published online by Cambridge University Press:  02 January 2018

L.T. Dimowa*
Affiliation:
Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 107, 1113 Sofia, Bulgaria
O.E. Petrov
Affiliation:
Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 107, 1113 Sofia, Bulgaria
N.I. Djourelov
Affiliation:
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., BG-1784 Sofia, Bulgaria
B.L. Shivachev
Affiliation:
Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 107, 1113 Sofia, Bulgaria
*

Abstract

Zn-exchanged natural clinoptilolite was studied by powder X-ray diffraction and positron annihilation lifetime spectroscopy. The original clinoptilolite tuff was subjected to size fractionation by sedimentation and dissolution of cristobalite (opal-C). After Zn2+-exchange the purified clinoptilolite sample contained 2.2 Zn2+ ions per unit cell. Structural details obtained by Rietveld refinement showed that the Zn2+ cations are located in three sites (Zn1, Zn2 and Zn3) in the channels of the clinoptilolite. Site Zn1 is located in the centre of channel-A (Mg2+-M4 site). Site Zn2 is in channel-B, next to the calcium M2 position. A new Zn3 site is located in channel-A, in imminent proximity to Zn1. Positron Annihilation Lifetime Spectroscopy (PALS) was employed to assess the Zn exchange. As the cation content influences the free volume of the channels, the ionexchange process can be monitored by PALS. The results suggest the existence of two sizes of cavities, in accordance with the structural refinement.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alietti, A., Brigatti, M.F. & Poppi, L. (1975) Il comportammento termodifferenziale e termoponderale dei minerali del gruppo dell’heulandite. Rendiconti della Societa Italiana di Mineralogia e Petrologia, 31, 613630.Google Scholar
Asoka-Kumar, P., Alatalo, M., Ghosh, V.J., Kruseman, A.C., Nielsen, B. & Lynn, K.G. (1996) Increased elemental specificity of positron annihilation spectra. Physical Review Letters, 77, 20972100.CrossRefGoogle ScholarPubMed
Bertaux, J., Fröhlich, F. & Ildefonse, P. (1998) Multicomponent analysis of FTIR spectra: quantification of amorphous and crystallized mineral phases in synthetic and natural sediments. Journal of Sedimentary Research, 68, 440447.CrossRefGoogle Scholar
Boles, J.R. (1972) Composition, optical properties, cell dimensions, and thermal stability of some heulandite group zeolites. American Mineralogist, 57, 14631493.Google Scholar
Castaldi, P., Santona, L., Cozza, C., Giuliano, V., Abbruzzese, C., Nastro, V. & Melis, P. (2005) Thermal and spectroscopic studies of zeolites exchanged with metal cations. Journal of Molecular Structure, 734, 99105.CrossRefGoogle Scholar
Cerri, G., de Gennaro, M. Bonferoni, C. & Caramella, C. (2004), Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Applied Clay Science, 27, 141150.CrossRefGoogle Scholar
Colella, C. (1999) Natural zeolites in environmentally friendly processes and applications. Studies in Surface Science and Catalysis, 125, 641655.CrossRefGoogle Scholar
Copcia, V.E., Hristodor, C.M., Dunca, S., Iordanova, R., Bachvarova-Nedelcheva, A., Forna, N.C. & Sandu, I. (2013) Synthesis and antibacterial properties of ZnO/ clinoptilolite and TiO2/ZnTiO3/clinoptilolite powders. Revista de Chimie – Bucharest, 64, 978981.Google Scholar
Dimova, L., Shivachev, B.L. & Nikolova, R.P. (2011) Single crystal structure of pure and Zn ion exchanged clinoptilolite: Comparison of low temperature and room temperature structures and Cu vs. Mo radiation. Bulgarian Chemical Communications, 43, 217224.Google Scholar
Dimowa, L.T., Petrov, S.L. & Shivachev, B.L. (2013) Natural and Zn exchanged clinoptilolite: in situ high temperature XRD study of structural behavior and cat ion positions. Bulgarian Chemical Communications, 45, 466473.Google Scholar
Doula, M., Ioannou, A. & Dimirkou, A. (2002) Copper adsorption and Si, Al, Ca, Mg and Na release from clinoptilolite. Journal of Colloid and Interface Science, 245, 237250.CrossRefGoogle Scholar
Elaiopoulos, K., Perraki, Th. & Grigoropoulou, E. (2008) Mineralogical study and porosimetry measurements of zeolites from Scaloma area, Thrace, Greece. Microporous and Mesoporous Materials, 112, 441449.CrossRefGoogle Scholar
Eldrup, M., Lightbody, D. & Sherwood, J.N. (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chemical Physics, 63, 5158.CrossRefGoogle Scholar
Garcia-Basabe, Y., Ruiz-Salvador, A.R., Maurin, G., de Menorval, L.-C., Rodriguez-Iznaga, I. & Gomez, A. (2012) Location of extra-framework Co2+, Ni2+, Cu2+ and Zn2+ cations in natural and dealuminated clinoptilolite. Microporous and Mesoporous Materials, 155, 233239.CrossRefGoogle Scholar
Habbema, L., Koopmans, B., Menke, H.E., Doornweerd, S. & de Boulle, K. (1989) A 4 % erythromycin and zinc combination (Zineryt) versus 2% erythromycin (eryderm) in acne vulgaris: a randomized, doubleblind comparative study. British Journal of Dermatology, 121, 497502.CrossRefGoogle ScholarPubMed
Hernández-Ortiz, M., Hernández-Padrón, G., Bernal, R., Cruz-Vázquez, C., Vega-González, M. & Castaño, V.M. (2012) Nanostructured synthetic Opal-C. Digest Journal of Nanomaterials and Biostructures. 7, 12971302.Google Scholar
Holland, K.T., Bojar, R.A., Cunliffe, W.J., Cutcliffe, A.G., Eady, E.A., Farooq, L., Farrell, A.M., Gribbon, E.M. & Taylor, D. (1992) The effect of zinc and erythromycin on the growth of erythromycin-resistant and erythromycin-sensitive isolates of Propionibacterium acnes: an in-vitro study. British Journal of Dermatology, 126, 505509.CrossRefGoogle ScholarPubMed
Hrenovic, J., Milenkovic, J., Goic-Barisic, I. & Rajic, N. (2013) Antibacterial activity of modified natural clinoptilolite against clinical isolates of Acinetobacter baumannii. Microporous and Mesoporous Materials, 169, 148152.CrossRefGoogle Scholar
Kansy, J. (1996) Microcomputer program for analysis of positron annihilation lifetime spectra Nuclear Instruments and Methods in Physics Research A, 374, 235244.Google Scholar
Kirov, G.N. & Terziiski, G. (1997) Comparative study of clinoptilolite and zeolite A as antimicrobial agents. Pp. 133–141 in: Natural Zeolites, Sofia 1995 (G. Kirov, L. Filizova & O. Petrov, editors). Pensoft, Sofia - Moscow.Google Scholar
Korkuna, O., Leboda, R., Skubiszewska-Zieba, J., Vrublevska, T., Gunko, V.M. & Ryczkowski, J. (2006) Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243254.CrossRefGoogle Scholar
Koyama, K. & Takeuchi, Y. (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Zeitschrift fur Kristallographie, 145, 216239.Google Scholar
Ming, D.W. & Mumpton, F.A. (1989) Zeolites in soils. Pp. 873–911 in: Minerals in Soil Environments, 2nd Edn. (J.B. Dixon & S.B. Weed, editors). Soil Science Society of America.Google Scholar
Mohamed, H.F.M. (2001) Study on the effect of atmosphere on A-type zeolite using positron annihilation lifetime technique. Egyptian Journal of Solids, 24, 4149.Google Scholar
Moirou, A., Vaxevanidou, A., Christidis, G.E. & Paspaliaris, I. (2000) Ion exchange of zeolite Na-Pc with Pb2+, Zn2+ and Ni2+ ions. Clays and Clay Minerals, 48, 563571.CrossRefGoogle Scholar
Mozgawa, W. (2000) The influence of some heavy metals cations on the FTIR spectra of zeolites. Journal of Molecular Structure, 555, 299304.CrossRefGoogle Scholar
Mumpton, F.A. (1960) Clinoptilolite redefined. American Mineralogist, 45, 351369.Google Scholar
Perraki, Th. & Orfanoudaki, A. (2004) Mineralogical study of zeolites from Pentalofos area, Thrace, Greece. Applied Clay Science, 25, 916.CrossRefGoogle Scholar
Rietveld, H.M. (1967) Line profiles of neutron powder diffraction peaks for structure refinement. Acta Crystallographica, 22, 151152.CrossRefGoogle Scholar
Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 6571.CrossRefGoogle Scholar
Rodriguez-Fuentes, G., Ruiz-Salvador, A.R., Mir, M., Picazo, O., Quintana, G. & Delgado, M. (1998) Thermal and cation influence on IR vibrations of modified natural clinoptilolite. Microporous Mesoporous Materials, 20, 269281.CrossRefGoogle Scholar
Rodríguez-Iznaga, I., Gomez, A., Rodríguez-Fuentes, G., Benítez-Aguilar, A. & Serrano-Ballan, J. (2002) Natural clinoptilolite as an exchanger of Ni2+ and NH4 + ions under hydrothermal conditions and high ammonia concentration. Microporous and Mesoporous Materials, 53, 7180.CrossRefGoogle Scholar
Tao, S.J. (1972) Positronium annihilation in molecular substances. Journal of Chemical Physics, 56, 54995510.CrossRefGoogle Scholar
Topas V4.2 (2004) General Profile and Structure Analysis Software for Powder Diffraction Data, Bruker AXS Ltd.Google Scholar
Van Petegem, S., Van Waeyenberge, B., Segers, D. & Dauwe, C. (2003) A high-performance, high-resolution positron annihilation coincidence Doppler broadening spectrometer. Nuclear Instruments and Methods in Physics Research, A, 513, 622630.CrossRefGoogle Scholar