Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T19:55:21.682Z Has data issue: false hasContentIssue false

Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin

Published online by Cambridge University Press:  09 July 2018

A. C. Morton*
Affiliation:
British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG

Abstract

Intrastratal solution of detrital heavy minerals in North Sea Tertiary sandstones takes place in two different diagenetic settings, deep burial and acidic weathering. These are characterized by different orders of mineral stability: apatite, chloritoid, garnet, sphene and spinel are less stable in acidic weathering than in deep burial, whereas the reverse is true for andalusite, kyanite and sillimanite. Heavy-mineral dissolution patterns, therefore, do not follow one single order of stability but several, depending on the diagenetic environment in which the dissolution occurs. It seems from this that the relative order of stability for detrital heavy minerals is controlled by the chemistry of the interstitial waters, whereas the limits of persistence depend on pore-fluid temperature, rate of water throughput, and geological age. Because different diagenetic environments lead to differing orders of mineral stability, it may prove possible to elucidate certain aspects of the diagenetic history of a sandstone by heavy-mineral dissolution patterns.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blatt, H. & Sutherland, B. (1969) Intrastratal solution and non-opaque heavy minerals in shales. J. Sedim. Petrol. 39, 591600.Google Scholar
Boswell, P.G.H. (1942) The stability of minerals in sedimentary rocks. Proc. Geol. Soc. London 97, 5675.Google Scholar
Bramlette, M.N. (1941) The stability of minerals in sandstone. J. Sedim. Petrol. 11, 3236.CrossRefGoogle Scholar
De Jong, J.D. & Van Der Waals, L. (1971) Depositional environment and weathering phenomena of the white Miocene sands of southern Limburg (The Netherlands). Geol. en Mijnb. 417-424.Google Scholar
Dryden, L. & Dryden, C. (1946) Comparative rates of weathering of some common heavy minerals. J. Sedim. Petrol. 16, 9196.Google Scholar
Edelman, C.H. (1931) Diagenetische Umwandlungserscheinungen an detritischen Pyroxenen und Amphibolen. Forstschr. Min. Krist. Pet. 16, 6768.Google Scholar
Edelman, C.H. & Doeglas, D.J. (1931) Relikstrukturen detritischer Pyroxene und Amphibole. Min. Pet. Mitt. 42, 482490.Google Scholar
Edelman, C.H. & Doeglas, D.J. (1934) Über Umwandlungserscheinungen an detritischen Staurolith und anderen Mineralien. Min. Pet. Mitt. 45, 225234.Google Scholar
Friis, H. (1974) Weathered heavy-mineral associations from the young-Tertiary deposits of Jutland, Denmark. Sedim. Geol. 12, 199213.CrossRefGoogle Scholar
Friis, H. (1976) Weathering of a Neogene fluviatile fining-upwards sequence at Voervadsbro, Denmark. Bull. Geol. Soc. Denmark 25, 99105.CrossRefGoogle Scholar
Friis, H. & Johannesen, F.B. (1974) Late Tertiary weathering of fluvial deposits at Lasby, Denmark. Bull. Geol. Soc. Denmark 23, 197202.Google Scholar
Friis, H., Nielsen, O.B., Friis, E.M. & Balme, B.E. (1980) Sedimentological and palaeobotanical investigations of a Miocene sequence at Lavsbjerg, central Jutland, Denmark. Danm. Geol. Unders., Arbog 1979, 51-67.Google Scholar
Füchtbauer, H. (1974) Sediments and Sedimentary Rocks 1. E. Schweizerbart’ sche, Stuttgart.Google Scholar
Goldich, S.S. (1938) A study in rock-weathering. J. Geol. 46, 1758.CrossRefGoogle Scholar
Grimm, W-D. (1973) Stepwise heavy mineral weathering in the Residual Quartz Gravel, Bavarian Molasse (Germany). Contr. Sedimentology 1, 103125.Google Scholar
Hancock, N.J. & Taylor, A.M. (1978) Clay mineral diagenesis and oil migration in the Middle Jurassic Brent Sand Formation. J. Geol. Soc. London 135, 6972.Google Scholar
Hemingway, J.E. & Riddler, G.P. (1982) Basin inversion in North Yorkshire. Trans. Inst. Min. Metall. B91, 175186.Google Scholar
Hester, N.C. (1974) Post-depositional subaerial weathering effects on the mineralogy of an Upper Cretaceous sand in southeastern United States. J. Sedim. Petrol. 44, 363373.Google Scholar
Knox, R.W. O'B., Morton, A.C. & Harland, R. (1981) Stratigraphical relationships of Palaeocene sands in the UK sector of the central North Sea. Pp. 267281 in: Petroleum Geology of the Continental Shelf of North-West Europe (Illing, L. V. & Hobson, G. D., editors), Heyden, London.Google Scholar
Mackie, W. (1923) The principles that regulate the distribution of particles of heavy minerals in sedimentary rocks, as illustrated by the sandstones of the North-East of Scotland. Trans. Edinburgh Geol. Soc. 11, 138164.CrossRefGoogle Scholar
Morton, A.C. (1979) Surface features of heavy mineral grains from Palaeocene sands of the central North Sea. Scott. J. Geol. 15, 293300.Google Scholar
Morton, A.C. (1982a) The provenance and diagenesis of Palaeogene sandstones of southeast England as indicated by heavy mineral analysis. Proc. Geol. Assoc. London 93, 263274.CrossRefGoogle Scholar
Morton, A.C. (1982b) Lower Tertiary sand development in Viking Graben, North Sea. Bull. Am. Assoc. Petroleum Geol. 66, 15421559.Google Scholar
Morton, A.C. & Humphreys, B. (1983) The petrology of the Middle Jurassic sandstones from the Murchison Field, North Sea. J. Petrol. Geol. 5, 245260.CrossRefGoogle Scholar
Nickel, E. (1973) Experimental dissolution of light and heavy minerals in comparison with weathering and intrastratal solution. Contr. Sedimentology 1, 168.Google Scholar
Pettijohn, F.J. (1941) Persistence of heavy minerals and geologic age. J. Geol. 49, 610625.CrossRefGoogle Scholar
Pettijohn, F.J. (1975) Sedimentary Rocks 3rd Ed. Harper & Row, New York.Google Scholar
Rochow, K.A. (1981) Seismic stratigraphy of the North Sea ‘Palaeocene’ deposits. Pp. 255266 in: Petroleum Geology of the Continental Shelf of North-West Europe (Illing, L. V. & Hobson, G. D., editors). Heyden, London.Google Scholar
Scavnicar, B. (1979) Pjescenjaci Pliocenai Miocena savske potoline. Zbornik Radova, sekcija za primjenu geologije, geofizike, geokemije, Serija A, 6/2, 351-382.Google Scholar
Schmidt, V. & McDonald, D.A. (1979) The role of secondary porosity in the course of sandstone diagenesis. Pp. 175207 in: Aspects of Diagenesis (Scholle, P. A. & Schluger, P. A., editors). SEPM Spec. Pub. 26.CrossRefGoogle Scholar
Smithson, F. (1941) The alteration of detrital minerals in the Mesozoic rocks of Yorkshire. Geol. Mag. 78, 97112.CrossRefGoogle Scholar
Sommer, F. (1978) Diagenesis of Jurassic sandstones in the Viking Graben. J. Geol. Soc. London 135, 6367.CrossRefGoogle Scholar
Walker, T.R. (1967) Formation of red beds in modern and ancient deserts. Bull. Geol. Soc. Am. 78, 353368.CrossRefGoogle Scholar
Walker, T.R., Waugh, B. & Crone, A.J. (1978) Diagenesis in first-cycle desert alluvium of Cenozoic age, southwestern United States and northwestern Mexico. Bull. Geol. Soc. Am. 89, 1932.2.0.CO;2>CrossRefGoogle Scholar
Weyl, R. (1952) Zur frage der schwermineralverwitterung in Sedimenten. 1: Erscheinungsbild und vorkommen der schwermineralverwitterung. Erdöl u. Kohle 5, 2933.Google Scholar
Weyl, R. & Werner, H. (1951) Schwermineraluntersuchungen in Jungtertiär und Altquarär Schleswig- Holsteins. Proc. 3rd Int. Congr. Sedimentology, Groningen-Wageningen, 293-303.Google Scholar
Wieseneder, H. & Maurer, J. (1959) Ursachen der räumlichen und zeitlichen anderung des Mineralbestandes der sedimente des Wiener Beckens. Eclog. Geol. Helv. 59, 11551172.Google Scholar
Ziegler, P.A. (1981) Evolution of sedimentary basins in North-West Europe. Pp. 339 in: Petroleum Geology of the Continental Shelf of North-West Europe (Illing, L. V. & Hobson, G. D., editors). Heyden, London.Google Scholar