Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T05:19:56.909Z Has data issue: false hasContentIssue false

The smectitic minerals in a bentonite deposit from Melo (Uruguay)

Published online by Cambridge University Press:  09 July 2018

L. Calarge
Affiliation:
Université de Poitiers, LaboratoireHydr'ASA, UMR 6532, 40 Av. du Recteur Pineau, 86022 PoitiersCedex, France Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Av. Bento Gonc¸alves 9500, Porto AlegreBrazil
B. Lanson*
Affiliation:
Environmental Geochemistry Group, LGIT, Maison des Géosciences, BP53, University of Grenoble- CNRS, 38041 Grenoble Cedex 9, France
A. Meunier
Affiliation:
Université de Poitiers, LaboratoireHydr'ASA, UMR 6532, 40 Av. du Recteur Pineau, 86022 PoitiersCedex, France
M. L. Formoso
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Av. Bento Gonc¸alves 9500, Porto AlegreBrazil
*

Abstract

A nearly monomineralic 1.5 m thick bentonite bed sampled in Melo (Uruguay) appears to be a pure high-charge montmorillonite: [Si3.94Al0.06](Al1.40Fe3+0.11Ti0.02Mg0.49Mn0.01)O10 (OH)2Na0.01K0.08Ca0.18. However, contrasting swelling behaviours have been demonstrated by fitting the experimental X-ray diffraction patterns which were recorded on oriented preparations of the same sample in different saturation states. According to the expandability of the layers in the Ca-, K- and K-Ca-saturated (i.e. saturated first with K+ and subsequently with Ca2+) states, three ‘layer types’ were defined. Low-, intermediate-, and high-charge layers are fully, partly, and not expandable, respectively, after K-saturation. Collapse of high-charge layers is not reversible after subsequent Ca-saturation, probably because of tetrahedral substitutions. These three different layer types are segregated in two distinct randomly interstratified mixed-layer phases. Total surface area and cation exchange capacity are shown to depend on the interlayer cation composition.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreis, R.R., Ferrando, L. & Herbst, R. (1996) Terrenos Carboníferos y Pérmicos de la Repu´blica Oriental del Uruguay. Pp. 309343 in: El Sistema Pérmico en la Repu´ blica Argentina y en la Repu´ blica Oriental del Uruguay. Academia Nacional del Uruguay, Cordoba, Argentina.Google Scholar
Axelrod, D.I. (1981) Role of volcanism in climate and evolution. Geological Society of America, Special Paper 185.CrossRefGoogle Scholar
Calarge, L., Meunier, A. & Formoso, M.L.L. (2003) A bentonite bed in the Acegua (RS, Brazil) and Melo (Uruguay) areas: a highly crystallized montmorillonite. Journal of South American Earth Sciences, in press.Google Scholar
Cetin, K. & Huff, W.D. (1995) Layer charge of the expandable component illite/smectite in K-bentonite as determined by alkylammonium ion exchange. Clays and Clay Minerals, 43, 150158.CrossRefGoogle Scholar
Cradwick, P.D. & Wilson, M.J. (1978) Calculated X-ray diffraction curves for the interpretation of a threecomponent interstratified system. Clay Minerals, 13, 5364.CrossRefGoogle Scholar
Cuadros, J. (1997) Interlayer cation effects on the hydration state of smectite. American Journal of Science, 297, 829841.CrossRefGoogle Scholar
Cuadros, J. & Altaner, S.P. (1998a) Characterization of mixed-layer illite-smectite from bentonite using microsc opic, chemical and X-ray methods : Constraints on the smectite-to-illite transformation mechanism. American Mineralogist, 83, 762774.CrossRefGoogle Scholar
Drits, V.A., Lindgreen, H., Sakharov, B.A. & Salyn, A.S. (1997) Sequence structure transformation of illitesmectite- vermiculite during diagenesis of Upper Jurassic shales, North Sea. Clay Minerals, 33, 351371.CrossRefGoogle Scholar
Foscolos, A.E. & Kodama, H. (1974) Diagenesis of clay minerals from Cretaceous shales of northeastern British Columbia. Clays and Clay Minerals, 22, 319335.CrossRefGoogle Scholar
Heilman, M.D., Carter, D.L. & Gonzalez, C.L. (1965) The ethylene glycol monoethyl ether (EGME) technique for determining soil-surface area. Soil Science, 100, 409413.CrossRefGoogle Scholar
Hoffmann, U. & Klemen, E. (1950) Loss of exchangeability of lithium ions in bentonite on heating. Zeitschrift für Anorganische und Allegemeine Chemie, 262, 9599.Google Scholar
Howard, J.J. (1981) Lithium and potassium saturation of illite/smectite clays from interlaminated shales and sandstones. Clays and Clay Minerals, 29, 136 142.CrossRefGoogle Scholar
Jagodzinski, H. (1949) Eindimensionale Fehlordnung in Kristallenundihr Einflussaufdie Röntgeninter fer enzen: I . Bere chnung des Fehlordnungsgrades aus der Röntgenintensitaten. Acta Crystallographica, 2, 201207.CrossRefGoogle Scholar
Laird, D.A. (1999) Layer charge influences on the hydration of expandable 2:1 phyllosilicates. Clays and Clay Minerals, 47, 630 636.CrossRefGoogle Scholar
Malla, P.B. & Douglas, L.A. (1987) Identification of expanding layer silicates: layer charge vs. expansion properties. Pp. 277283 in: Proceedings of the International Clay Conference, Denver 1985 (Schultz, L.G., van Olphen, H. & Mumpton, F.A., editors). Clay Minerals Society, Bloomington, Indiana.Google Scholar
Mamy, J. & Gaultier, J.P. (1976) Les phénomènes de diffraction de rayonnements X et électroniques par les réseaux atomiques. Application à l’étude de l’ordre cristallin dans les minéraux argileux. II. Evolution structurale de la montmorillonite associée au phénomène de fixation irréversible du potassium. Annales Agronomiques, 27, 116.Google Scholar
Moore, D.M. & JrReynolds, R.C., (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford and New York.Google Scholar
Petit, S., Righi, D., Madejová, J. & Decarreau, A. (1998) Layer charge estimation of smectites using infrared spectroscopy. Clay Minerals, 33, 579591.CrossRefGoogle Scholar
Planc°on, A. & Drits, V.A. (2000) Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals. Clays and Clay Minerals, 48, 5762.CrossRefGoogle Scholar
Jr.Reynolds, R.C., (1992) X-ray diffraction studies of illite/smectite from rocks, <1 μm randomly oriented powders, and <1 μm oriented powder aggregates: The absence of laboratory-induced artifacts. Clays and Clay Minerals, 40, 387396.CrossRefGoogle Scholar
Sakharov, B.A., Lindgreen, H., Salyn, A.L. & Drits, V.A. (1999) Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting. Clays and Clay Minerals, 47, 555566.CrossRefGoogle Scholar
Sato, T., Watanabe, T. & Otsuka, R. (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40, 103113.CrossRefGoogle Scholar
Talibudeen, O. & Goulding, K.W.T. (1983) Charge heterogeneity in smectit es. Clays and Clay Minerals, 31, 3742.CrossRefGoogle Scholar