Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T16:30:55.442Z Has data issue: false hasContentIssue false

Residence and fractionation of rare earth elements during kaolinization of alkaline peraluminous granites in NW Spain

Published online by Cambridge University Press:  09 July 2018

E. Galán
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Spain
J. C. Fernández-Caliani*
Affiliation:
Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, Spain
A. Miras
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Spain
P. Aparicio
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Spain
M. G. Márquez
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Spain
*

Abstract

A geochemical and mineralogical study has allowed us to address the factors controlling distribution pattern, residence and behaviour of rare earth elements (REE) during kaolinization of Variscan granitoids in NW Spain. Mineral composition of the deeply weathered samples is dominated by kaolinite, with minor amounts of quartz, muscovite-illite, alkaline feldspar and traces of resistant minerals (rutile, ilmenite, zircon and monazite). Variable amounts of Si, Na, Ca, K, Rb, Cs, Ba, U and P were lost from the weathering profile, as a result of feldspars, mica and apatite breakdown, whereas Al, Fe, Ti, Zr, Th, Hf and REE were concentrated in the residual kaolin. Chondrite-normalized REE patterns of the kaolins show an overall enrichment of light REE (LaN/SmN = 1.22–2.53), heavy REE depletion (GdN/YbN = 2.42–15.10) and a strong negative Eu anomaly (Eu/Eu* = 0.11–0.25), probably inherited from the parent granite. Nevertheless, the normalization to the parent granite reveals some REE fractionation and increasing positive Eu anomalies with advancing weathering, in response to the breakdown of feldspars. Different grain-size fractions show similar REE distribution patterns, but differ in concentration levels. Although the fine fractions are the most important REE reservoir, there is no positive correlation with clay mineralogy. The correlative behaviour among P2O5, Th and REE in the <2 mm fraction suggests that monazite plays a dominant role controlling the REE budget in the weathering profile.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aranguren, A. & Tubía, J.M. (1992) Structural evidence for the relationship between thrusts, extensional faults and granite intrusions in the Variscan belt of Galicia (Spain). Journal of Structural Geology, 14, 12291237.Google Scholar
Arenas, R., Gil-Ibarguchi, J.I. & González-Lodeiro, F. (1986) Tectonostratigraphic units in the complexes with mafic and related rocks of the NW Iberian Massif. Hercynica, 2, 87110.Google Scholar
Aubert, D., Stille, P. & Probst, A. (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta, 65, 387406.CrossRefGoogle Scholar
Banfield, J.F. & Eggleton, RA (1989) Apatite replacement and rare earth mobilization, fractionation and fixation during weathering. Clays and Clay Minerals, 37, 113127.Google Scholar
Bastida, F., Martínez-Catalan, J.R. & Pulgar, J.A. (1986) Structural, metamorphic and magmatic history of Mondonedo nappe (Hercynian belt, NW Spain). Journal of Structural Geology, 8, 415430.Google Scholar
Bea, F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology, 37, 521552.CrossRefGoogle Scholar
Bellido, F., González-Lodeiro, F., Klein, E., Martínez-Catalán, J.R. & Pablo, J.G. (1987) Las rocas graníticas hercínicas del norte de Galicia y occidente de Asturias. Memorias del Instituto Geológico y Minero de España, 101 pp.Google Scholar
Bellido, F., Brandle, J.L., Lasala, M. & Reyes, J. (1992) Consideraciones petrológicas y cronológicas sobre las rocas graníticas hercínicas de Galicia. Cuadernos do Laboratorio Xeolóxico de Laxe, 17, 241261.Google Scholar
Capdevila, R. & Floor, P. (1970) Les différents types de granites and leur distribution dans le NW de l’Espagne. Boletín Geológico Minero, 80, 215225.Google Scholar
Capdevila, R., Corretge, L.G. & Floor, P. (1973) Les granitoides varisques de la Meseta Ibérique. Bulletin de la Societé Géologique de France, 15, 209228.Google Scholar
Condie, K.C., Dengate, J. & Cullers, R.L. (1995) Behaviour of rare earth elements in a paleoweathering profile on a granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59, 279294.Google Scholar
Coppin, F., Berger, G., Bauer, A., Castet, S. & Loubet, M. (2002) Sorption of lanthanides on smectite and kaolinite. Chemical Geology, 182, 5768.Google Scholar
Corretge, L.G., Suárez, O. & Galán G (1990) West Asturian-Leonese Zone. Igneous rocks. Pp. 115128 in: Pre-Mesozoic Geology of Iberia (Dallmeyer, R.D. & Martínez, E., editors). Springer-Verlag, Berlin.Google Scholar
Cullers, R.L., Barrett, T., Carlson, R. & Robinson, B. (1987) Rare-earth elements and mineralogic changes in Holocene soils and stream sediments. A case study in the Wet Mountains, Colorado, USA. Chemical Geology, 63, 275297.Google Scholar
De Putter, T., André, L., Bernard, A., Dupuis, C., Jedwab, J., Nicaise, D. & Perruchot, A. (2002) Trace element (Th, U, Pb, REE) behaviour in a cryptokarstic halloysite and kaolinite deposit from Southern Belgium: importance of accessory mineral formation for radioactive pollutant trapping. Applied Geochemistry, 17, 13131328.Google Scholar
Duddy, I.R. (1980) Redistribution and fractionation of rare earth and other elements in a weathering profile. Chemical Geology, 30, 363381.Google Scholar
Fernandez-Suárez, J., Dunning, G.R., Jenner, G.A. & Gutiérrez-Alonso, G. (2000) Variscan collisional magmatism and deformation in NW Iberia: constraints from U-Pb geochronology of granitoids. Journal of the Geological Society, 157, 565576.CrossRefGoogle Scholar
Gil-Ibarguchi, J.I. & Arenas, R. (1990) Metamorphic evolution of the Allocthonous Complexes from the northwest of the Iberian Peninsula. Pp. 237246 in: Pre-Mesozoic Geology of Iberia (Dallmeyer, R.D. & Martínez-Catalan, R., editors. Springer-Verlag, Berlin.Google Scholar
González-López, J.M., Bauluz, B., Fernández-Nieto, C. & Yuste, A. (2005) Factors controlling the traceelement distribution in fine-grained rocks: the Albian kaolinite-rich deposits of the Oliete Basin (NE Spain). Chemical Geology, 214, 119.CrossRefGoogle Scholar
Gouveia, M.A., Prudencio, M.I., Figueiredo, M.O., Pereira, L.C.J., Waerenborgh, J.C., Morgado, I., Pena, T. & Lopes, A. (1993) Behaviour of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal. Chemical Geology, 107, 293296.Google Scholar
Gromet, L.P. & Silver, L.T. (1983) Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochimica Cosmochimica Acta, 47, 925939.Google Scholar
Harlavan, Y. & Erel, Y. (2002) The release of Pb and REE from granitoids by dissolution of accessory phases. Geochimica Cosmochimica Acta, 66, 837848.Google Scholar
Harnois, L. (1988) The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319322.Google Scholar
Julivert, M., Fontboté, J.M., Ribeiro, A. & Conde, L.E. (1972) Mapa Tectónico de la Península Ibérica y Baleares a escala 1:1.000.000. Instituto Geológico y Minero de España, Madrid.Google Scholar
Martín-Pozas, J.M., Galán, E. & Martín-Vivaldi, J.L. (1971) Il giacimento di caolino di Jove, Lugo, Spagna. Pp. 89109 in I Congresso Nazionale, AIPEA it.Google Scholar
Martínez, F.J., Julivert, M., Sebastian, A., Arboleya, M.L. & Gil-Ibarguchi, J.I. (1988) Structural and thermal evolution of high-grade areas in the northwestern parts of the Iberian Massif. American Journal of Science, 288, 969996.Google Scholar
Martínez-Catalán, J.R., Arenas, R., Díaz-García, F. & Abati, J. (1997) Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events. Geology, 25, 11031106.2.3.CO;2>CrossRefGoogle Scholar
Minarik, L., Zigova, A., Bendl, J., Skrivan, P. & St’astny, M. (1998) The behaviour of rare-earth elements and Y during the rock weathering and soil formation in the Rícany granite massif, Central Bohemia. The Science of the Total Environment, 215, 101111.Google Scholar
Mongelli, G. (1993) REE and other trace elements in a granitic weathering profile from Serre, southern Italy. Chemical Geology, 103, 1725.CrossRefGoogle Scholar
Nesbitt, H.W. (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206210.CrossRefGoogle Scholar
Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and past plate motions inferred from major element chemistry of lutites. Nature, 299, 715717.CrossRefGoogle Scholar
Ortega, L.A. & Gil-Ibarguchi, J.I. (1990) The genesis of the Late Hercynian granitoids from Galicia (Nortwestern Spain). Inferences from REE studies. Journal of Geology, 98, 189211.CrossRefGoogle Scholar
Panahi, A., Young, G.M. & Rainbird, R.H. (2000) Behaviour of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada. Geochimica et Cosmochimica Acta, 64, 21992220.Google Scholar
Papoulis, D., Tsolis-Katagas, P. & Katagas, C. (2004) Monazite alteration mechanisms and depletion measurements in kaolins. Applied Clay Science, 24, 271285.CrossRefGoogle Scholar
Pérez-Estaun, A., Martínez-Catálan, J.R. & Bastida, F. (1991) Crustal thickening and deformation sequence in the footwall to the suture of the Variscan belt of Northwest Spain. Tectonophysics, 191, 243253.CrossRefGoogle Scholar
Priem, H.N.A. & Den Tex, E. (1984) Tracing crustal evolution in the NW Iberian Peninsula through the Rb-Sr and U-Pb systematics of Paleozoic granitoids: A review. Physics of Earth and Planetary Interiors, 35, 121130.Google Scholar
Prudencio, M.I., Braga, M.A.S. & Gouveia, M.A. (1993) REE mobilization, fractionation and precipitation during weathering of basalts. Chemical Geology, 107, 251254.Google Scholar
Scheepers, R. & Rozendaal, A. (1993) Redistribution and fractionation of U, Th and rare-earth elements during weathering of subalkaline granites in SW Cape Province, South Africa. Journal of African Earth Sciences, 17, 4150.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre shale. U.S. Geological Survey Professional Paper, 391C CrossRefGoogle Scholar
Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution. Blackwell, Oxford, UK.Google Scholar
Taylor, S.R. & McLennan, S.M. (1995) The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241265.Google Scholar