Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T11:48:45.629Z Has data issue: false hasContentIssue false

Removal of ivermectin from aqueous media using commercial, bentonite-based organophilic clay as an adsorbent

Published online by Cambridge University Press:  01 July 2022

Ramiro Picoli Nippes*
Affiliation:
Maringa State University, Av. Colombo, 5790 – Zona 7, Maringá - PR, 87020-900, Brazil
Paula Derksen Macruz
Affiliation:
Maringa State University, Av. Colombo, 5790 – Zona 7, Maringá - PR, 87020-900, Brazil
Thaísa Frossard Coslop
Affiliation:
Maringa State University, Av. Colombo, 5790 – Zona 7, Maringá - PR, 87020-900, Brazil
Deise Molinari
Affiliation:
Maringa State University, Av. Colombo, 5790 – Zona 7, Maringá - PR, 87020-900, Brazil
Mara Heloísa Neves Olsen Scaliante
Affiliation:
Maringa State University, Av. Colombo, 5790 – Zona 7, Maringá - PR, 87020-900, Brazil
*

Abstract

The worldwide use of pharmaceuticals is of concern to those researchers who develop new techniques for the removal of these compounds from the aquatic medium. The objective of the present work was to characterize and evaluate the performance of a commercial, bentonite-based organophilic clay in removing ivermectin from aqueous solution. The adsorbent was characterized by nitrogen physisorption, thermogravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Batch-scale adsorption experiments were performed to evaluate the kinetics, isotherms, thermodynamics and effect of pH on removal of this drug and reuse of the clay. The bentonite has a small specific surface area with an irregular surface. The Elovich kinetic model fits the experimental data better than other models, indicating that chemisorption contributes to drug removal in this case. The Langmuir and Sips isothermal models best fit the experimental equilibrium data. The process was shown to be favorable (ΔG°ads<0), endothermic (ΔH°ads>0), with an increase in the degrees of freedom at the solid–liquid interface (ΔS°ads>0), and with characteristics of a physical-chemical adsorption process (Ea = 11.065 kJ mol–1) under the study conditions. Adsorption was favored at the natural pH of the solution and the organophilic clay could be regenerated with water and reused in consecutive adsorption cycles. The amount of ivermectin adsorbed on the organophilic clay ranged from 1.78 to 3.88 mg g–1. The organophilic clay was shown to be a cost-effective potential adsorbent for ivermectin-contaminated water-treatment applications.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Liva Dzene

References

Aharoni, C. & Tompkins, F.C. (1970) Kinetics of Adsorption and Desorption and the Elovich Equation. Advances in Catalysis, 21, 149.Google Scholar
Aksu, Z. & Kabasakal, E. (2004) Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Separation and Purification Technology, 35, 223240.CrossRefGoogle Scholar
Almeida, A. da S.V. de, Mastelaro, V.R., da Silva, M.G.C., Prediger, P. & Vieira, M.G.A. (2022) Adsorption of 17α-ethinylestradiol onto a novel nanocomposite based on graphene oxide, magnetic chitosan and organoclay (GO/mCS/OC): Kinetics, equilibrium, thermodynamics and selectivity studies. Journal of Water Process Engineering, 47, 102729.CrossRefGoogle Scholar
Andini, S., Cioffi, R., Montagnaro, F., Pisciotta, F. & Santoro, L. (2006) Simultaneous adsorption of chlorophenol and heavy metal ions on organophilic bentonite. Applied Clay Science, 31, 126133.CrossRefGoogle Scholar
Antonelli, R., Malpass, G.R.P., Da Silva, M.G.C. & Vieira, M.G.A. (2020) Adsorption of ciprofloxacin onto thermally modified bentonite clay: Experimental design, characterization, and adsorbent regeneration. Journal of Environmental Chemical Engineering, 8, 104553.CrossRefGoogle Scholar
Araújo, E.M., Melo, T.J.A. de, Oliveira, A.D. de, Araújo, H.L.D., Araújo, K.D. & Barbosa, R. (2006) Preparação de argilas organofílicas e desenvolvimento de nanocompósitos com matrizes poliméricas de polietileno e nylon6. Parte 1: comportamento mecânico. Polímeros, 16, 3845.CrossRefGoogle Scholar
Ashrafi, S.D., Safari, G.H., Sharafi, K., Kamani, H. & Jaafari, J. (2021) Adsorption of 4-Nitrophenol on calcium alginate-multiwall carbon nanotube beads: Modeling, kinetics, equilibriums and reusability studies. International Journal of Biological Macromolecules, 185, 6676.CrossRefGoogle ScholarPubMed
Awad, M.E., López-Galindo, A., Sánchez-Espejo, R., Sainz-Díaz, C.I., El-Rahmany, M.M. & Viseras, C. (2018) Crystallite size as a function of kaolinite structural order-disorder and kaolin chemical variability: Sedimentological implication. Applied Clay Science, 162, 261267.CrossRefGoogle Scholar
Awad, A.M., Shaikh, S.M.R., Jalab, R., Gulied, M.H., Nasser, M.S., Benamor, A. & Adham, S. (2019) Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Separation and Purification Technology, 228, 115719.CrossRefGoogle Scholar
Awad, M.E., López-Galindo, A., Medarević, D., Đuriš, J., El-rahmany, M.M., Ibrić, S. & Viseras, C. (2020) Flow and tableting behaviors of some egyptian kaolin powders as potential pharmaceutical excipients. Minerals, 10, 123.Google Scholar
Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73, 373380.CrossRefGoogle Scholar
Bhattacharya, K.G. & Sharma, A. (2005) Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder. Dyes and Pigments, 65, 5159.CrossRefGoogle Scholar
Bogunović, M., Ivančev-Tumbas, I., Česen, M., Sekulić, T.D., Prodanović, J., Tubić, A., Heath, D. & Heath, E. (2021) Removal of selected emerging micropollutants from wastewater treatment plant effluent by advanced non-oxidative treatment – A lab-scale case study from Serbia. Science of the Total Environment, 765, 142764. https://doi.org/10.1016/j.scitotenv.2020.142764CrossRefGoogle ScholarPubMed
Bower, C.K. & Daeschel, M.A. (1999) Resistance responses of microorganisms in food environments. International Journal of Food Microbiology, 50, 3344.CrossRefGoogle ScholarPubMed
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, 309319.CrossRefGoogle Scholar
Charuaud, L., Jardé, E., Jaffrézic, A., Liotaud, M., Goyat, Q., Mercier, F. & Le Bot, B. (2019) Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France. Science of the Total Environment, 664, 605615.CrossRefGoogle Scholar
Chaudhary, M., Mishra, S. & Kumar, A. (2017) Estimation of water pollution and probability of health risk due to imbalanced nutrients in River Ganga, India. International Journal of River Basin Management, 15, 5360.CrossRefGoogle Scholar
Chen, W.Y., Lin, C.J. & Liao, C.M. (2014) Assessing exposure risks for aquatic organisms posed by Tamiflu use under seasonal influenza and pandemic conditions. Environmental Pollution, 184, 377384.CrossRefGoogle ScholarPubMed
Chen, W.Y., Wu, Y.T., Lin, H.C., Ieong, M.I. & Lee, B.H. (2020) Impact of long-term parental exposure to Tamiflu metabolites on the development medaka offspring (Oryzias latipes). Environmental Pollution, 261, 114146.CrossRefGoogle ScholarPubMed
Coslop, T.F., Nippes, R.P., Bergamasco, R. & Scaliante, M.H.N.O. (2021) Evaluation of diazepam adsorption in aqueous media using low-cost and natural zeolite: equilibrium and kinetics. Environmental Science and Pollution Research, 16, 18. https://dx.doi.org/10.1007/s11356-021-17452-zGoogle Scholar
Cotoruelo, L.M., Marqués, M.D., Leiva, A., Rodríguez-Mirasol, J. & Cordero, T. (2011) Adsorption of oxygen-containing aromatics used in petrochemical, pharmaceutical and food industries by means of lignin based active carbons. Adsorption, 17, 539550.CrossRefGoogle Scholar
de Andrade, J.R., Oliveira, M.F., Canevesi, R.L.S., Landers, R., da Silva, M.G.C. & Vieira, M.G.A. (2020) Comparative adsorption of diclofenac sodium and losartan potassium in organophilic clay-packed fixed-bed: X-ray photoelectron spectroscopy characterization, experimental tests and theoretical study on DFT-based chemical descriptors. Journal of Molecular Liquids, 312, 113427.CrossRefGoogle Scholar
de Araújo, T.P., Quesada, H.B., Bergamasco, R., Vareschini, D.T. & de Barros, M.A.S.D. (2020) Activated hydrochar produced from brewer's spent grain and its application in the removal of acetaminophen. Bioresource Technology, 310, 123399.CrossRefGoogle ScholarPubMed
de Farias, M.B., Silva, M.G.C. & Vieira, M.G.A. (2022) Adsorption of bisphenol A from aqueous solution onto organoclay: Experimental design, kinetic, equilibrium and thermodynamic study. Powder Technology, 395, 695707.CrossRefGoogle Scholar
de Souza, F.M., dos Santos, O.A.A. & Vieira, M.G.A. (2019) Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay. Environmental Science and Pollution Research, 26, 1832918342.CrossRefGoogle ScholarPubMed
Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J. & Sánchez-Polo, M. (2007) Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management, 85, 833846.CrossRefGoogle ScholarPubMed
Dubinin, M.M. & Radushkevich, L. V. (1947) The Equation of the Characteristic Curve of Activated Charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331.Google Scholar
Edwards, C.A., Atiyeh, R.M. & Römbke, J. (2001) Environmental impact of avermectins. Reviews of Environmental Contamination and Toxicology, 171, 111137.CrossRefGoogle Scholar
Essid, N., Allouche, M., Lazzem, M., Harrath, A.H., Mansour, L., Alwasel, S., Mahmoudi, E., Beyrem, H. & Boufahja, F. (2020) Ecotoxic response of nematodes to ivermectin, a potential anti-COVID-19 drug treatment. Marine Pollution Bulletin, 157, 111375.CrossRefGoogle ScholarPubMed
Farhad Howladar, M., Chakma, E., Jahan Koley, N., Islam, S., Al Numanbakthan, M.A., Ahmed, Z., Chowdhury, T.R. & Akter, S. (2020) The water quality and pollution sources assessment of Surma river, Bangladesh using, hydrochemical, multivariate statistical and water quality index methods. Groundwater for Sustainable Development, 12, 100523.CrossRefGoogle Scholar
França, D.B., Trigueiro, P., Filho, E.C.S., Fonseca, M.G., Jaber, M., França, D.B., Trigueiro, P., Filho, E.C.S., Fonseca, M.G. & Monitoring, M.J. (2020) Monitoring diclofenac adsorption by organophilic alkylpyridinium bentonites. Chemosphere, 242, 125109. https://doi.org/10.1016/j.chemosphere.2019.125109CrossRefGoogle ScholarPubMed
Freundlich, H.M.F. (1906) Over the Adsorption in Solution. The Journal of Physical Chemistry, 57, 385471.Google Scholar
Garric, J., Vollat, B., Duis, K., Péry, A., Junker, T., Ramil, M., Fink, G. & Ternes, T.A. (2007) Effects of the parasiticide ivermectin on the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata. Chemosphere, 69, 903910.CrossRefGoogle ScholarPubMed
Giles, C.H., MacEwan, T.H., Nakhwa, S.N. & Smith, D. (1960) Studies in Adsorption. Part XI.* A System. Journal of the Chemical Society, 846, 39733993.CrossRefGoogle Scholar
Ho, Y.S. & McKay, G. (1998) A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76, 332340.CrossRefGoogle Scholar
Hussain, S., Kamran, M., Khan, S.A., Shaheen, K., Shah, Z., Suo, H., Khan, Q., Shah, A.B., Rehman, W.U., Al-Ghamdi, Y.O. & Ghani, U. (2021) Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. International Journal of Biological Macromolecules, 168, 383394.CrossRefGoogle ScholarPubMed
Jacques, R.A., Lima, E.C., Dias, S.L.P., Mazzocato, A.C. & Pavan, F.A. (2007) Yellow passion-fruit shell as biosorbent to remove Cr(III) and Pb(II) from aqueous solution. Separation and Purification Technology, 57, 193198.CrossRefGoogle Scholar
Joon Kang, I., Yokota, H., Oshima, Y., Tsuruda, Y., Yamaguchi, T., Maeda, M., Imada, N., Tadokoro, H. & Honjo, T. (2002) Effect of 17β-estradiol on the reproduction of Japanese medaka (Oryzias latipes). Chemosphere, 47, 7180.CrossRefGoogle Scholar
Lagergren, S.Y. (1898) Zur theorie der sogenannten adsorption gelöster stoffe kungliga svenska vetenskapsa- kademiens. Handlingar, 24, 139.Google Scholar
Langmuir, I. (1917) The constitution and fundamental properties of solids and liquids. Part II.-Liquids. Journal of the Franklin Institute, 184, 721.CrossRefGoogle Scholar
Li, F., Liu, J. & Cao, L. (2015) A comparative QSAR study on the estrogenic activities of persistent organic pollutants by PLS and SVM. Emerging Contaminants, 1, 813.CrossRefGoogle Scholar
Liu, Y., Xu, L., Liu, J., Liu, X., Chen, C., Li, G. & Meng, Y. (2016) Graphene oxides cross-linked with hyperbranched polyethylenimines: Preparation, characterization and their potential as recyclable and highly efficient adsorption materials for lead(II) ions. Chemical Engineering Journal, 285, 698708.CrossRefGoogle Scholar
Lladó, J., Lao-Luque, C., Ruiz, B., Fuente, E., Solé-Sardans, M. & Dorado, A.D. (2015) Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics. Process Safety and Environmental Protection, 95, 5159.CrossRefGoogle Scholar
Lopes, C.W., Penha, F.G., Braga, R.M., Melo, D.M. de A., Pergher, S.B.C. & Petkowicz, D.I. (2011) Síntese e caracterização de argilas organofílicas contendo diferentes teores do surfactante catiônico brometo de hexadeciltrimetilamônio. Química Nova, 34, 11521156.CrossRefGoogle Scholar
Maia, G.S., de Andrade, J.R., da Silva, M.G.C. & Vieira, M.G.A. (2019) Adsorption of diclofenac sodium onto commercial organoclay: Kinetic, equilibrium and thermodynamic study. Powder Technology, 345, 140150.CrossRefGoogle Scholar
Manzotti, F. & dos Santos, O.A.A. (2019) Evaluation of removal and adsorption of different herbicides on commercial organophilic clay. Chemical Engineering Communications, 206, 15261543.CrossRefGoogle Scholar
Martin, R.J., Robertson, A.P. & Choudhary, S. (2021) Ivermectin: An Anthelmintic, an Insecticide, and Much More. Trends in Parasitology, 37, 4864.CrossRefGoogle ScholarPubMed
Moore, D.M. & Reynolds, R.C. Jr (1989) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.Google Scholar
Nippes, R.P., Macruz, P.D., da Silva, G.N. & Neves Olsen Scaliante, M.H. (2021) A critical review on environmental presence of pharmaceutical drugs tested for the covid-19 treatment. Process Safety and Environmental Protection, 152, 568582.CrossRefGoogle ScholarPubMed
Nóbrega, K.C., Wanderley, A.S.D., Leite, A.M.D., Araújo, E.M. & Melo, T.J.A. de. (2011) Obtenção e caracterização de argilas organofílicas visando à aplicação em nanocompósitos poliméricos. Revista Eletrônica de Materiais e Processos, 6.2, 8490.Google Scholar
Norfazilah Wan Ismail, W. & Umairah Mokhtar, S. (2021) Various Methods for Removal, Treatment, and Detection of Emerging Water Contaminants. Pp. 137–144 in: Emerging Contaminants. IntechOpen.CrossRefGoogle Scholar
Olu-Owolabi, B.I., Diagboya, P.N., Mtunzi, F.M. & Düring, R.A. (2021) Utilizing eco-friendly kaolinite-biochar composite adsorbent for removal of ivermectin in aqueous media. Journal of Environmental Management, 279, 111619.CrossRefGoogle ScholarPubMed
Örnek, A., Özacar, M. & Şengil, I.A. (2007) Adsorption of lead onto formaldehyde or sulphuric acid treated acorn waste: Equilibrium and kinetic studies. Biochemical Engineering Journal, 37, 192200.CrossRefGoogle Scholar
Pandey, S., Mandari, K.K., Kim, J., Kang, M. & Fosso-Kankeu, E. (2020) Recent Advancement in Visible-Light-Responsive Photocatalysts in Heterogeneous Photocatalytic Water Treatment Technology. Pp. 167196 in: Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment. Wiley, New Jersey.CrossRefGoogle Scholar
Pott-Junior, H., Bastos Paoliello, M.M., Miguel, A. de Q.C., da Cunha, A.F., de Melo Freire, C.C., Neves, F.F., da Silva de Avó, L.R., Roscani, M.G., dos Santos, S.D.S. & Chachá, S.G.F. (2021) Use of ivermectin in the treatment of Covid-19: A pilot trial. Toxicology Reports, 8, 505510.CrossRefGoogle ScholarPubMed
Ranjbari, A., Demeestere, K., Verpoort, F., Kim, K.-H. & Heynderickx, P.M. (2022) Novel kinetic modeling of thiabendazole removal by adsorption and photocatalysis on porous organic polymers: Effect of pH and visible light intensity. Chemical Engineering Journal, 431, 133349.CrossRefGoogle Scholar
Rathod, M., Haldar, S. & Basha, S. (2015) Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: Equilibrium, kinetic and thermodynamic studies. Ecological Engineering, 84, 240249.CrossRefGoogle Scholar
Rezazadeh, T., Dalali, N. & Sehati, N. (2018) Investigation of adsorption performance of graphene oxide/polyaniline reinforced hollow fiber membrane for preconcentration of Ivermectin in some environmental samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 204, 409415.CrossRefGoogle ScholarPubMed
Ruiz, B., Cabrita, I., Mestre, A.S., Parra, J.B., Pires, J., Carvalho, A.P. & Ania, C.O. (2010) Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution. Applied Surface Science, 256, 51715175.CrossRefGoogle Scholar
Safari, S., Alam, M.S., von Gunten, K., Samborsky, S. & Alessi, D.S. (2019) Inhibition of naphthalene leaching from municipal carbonaceous waste by a magnetic organophilic clay. Journal of Hazardous Materials, 368, 578583.CrossRefGoogle ScholarPubMed
Schweitzer, N., Fink, G., Ternes, T.A. & Duis, K. (2010) Effects of ivermectin-spiked cattle dung on a water-sediment system with the aquatic invertebrates Daphnia magna and Chironomus riparius. Aquatic Toxicology, 97, 304313.CrossRefGoogle ScholarPubMed
Senthil Kumar, P., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P. & Sivanesan, S. (2010) Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 261, 5260.CrossRefGoogle Scholar
Serna-Carrizales, C., Collins-Martínez, V., Flórez, E., Gomez-Duran, C.F., Palestino-Escobedo, A. & Ocampo-Pérez, R. (2020) Adsorption of sulfamethoxazole, sulfadiazine and sulfametazine in single and ternary systems on activated carbon. Experimental and DFT computations. Journal of Molecular Liquids, 104743.Google Scholar
Setshedi, K.Z., Bhaumik, M., Songwane, S., Onyango, M.S. & Maity, A. (2013) Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal. Chemical Engineering Journal, 222, 186197.CrossRefGoogle Scholar
Shah, I.K., Pre, P. & Alappat, B.J. (2011) Regeneration of adsorbent spent with Volatile Organic Compounds (VOCs). International Conference on Environment and Industrial Innovation, 12, 5559.Google Scholar
Sheha, R.R. & El-Zahhar, A.A. (2008) Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions. Journal of Hazardous Materials, 150, 795803.CrossRefGoogle ScholarPubMed
Sips, R. (1948) On the structure of a catalyst surface. The Journal of Chemical Physics, 16, 490495.CrossRefGoogle Scholar
Sohrabi, N., Mohammadi, R., Ghassemzadeh, H.R. & Heris, S.S.S. (2021) Equilibrium, kinetic and thermodynamic study of diazinon adsorption from water by clay/GO/Fe3O4: Modeling and optimization based on response surface methodology and artificial neural network. Journal of Molecular Liquids, 328, 115384.CrossRefGoogle Scholar
Speridião, D.D.C.A., dos Santos, O.A.A., de Almeida Neto, A.F. & Vieira, M.G.A. (2014) Characterization of spectrogel organoclay used to adsorption of petroleum derivatives. Materials Science Forum, 798–799, 558563.CrossRefGoogle Scholar
Sumpter, J.P. (1998) Xenoendocrine disrupters - Environmental impacts. Toxicology Letters, 102–103, 337342.CrossRefGoogle Scholar
Vargas, A.M.M., Cazetta, A.L., Kunita, M.H., Silva, T.L. & Almeida, V.C. (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal, 168, 722730.CrossRefGoogle Scholar
Vinicius, M., Silva, C., Pizarro, A.H. & Molina, C.B. (2017) Síntese e Caracterização de Bentonitas Pilarizadas com Al, Al/Fe e Impregnadas com Pd. Revista Eletrônica de Materiais e Processos, 12, 4751.Google Scholar
Weber, W.J. Jr. & Morris, J.C. (1963) Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89, 3159.CrossRefGoogle Scholar
Wu, F.C., Tseng, R.L. & Juang, R.S. (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150, 366373.CrossRefGoogle Scholar
Zacharewski, T. (1997) In vitro bioassays for assessing estrogenic substances. Environmental Science and Technology, 31, 613623.CrossRefGoogle Scholar
Supplementary material: File

Nippes et al. supplementary material

Nippes et al. supplementary material

Download Nippes et al. supplementary material(File)
File 342 KB