Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T21:48:48.543Z Has data issue: false hasContentIssue false

Regularly interstratified dioctahedral mica-smectite from Roseki deposits in Japan

Published online by Cambridge University Press:  09 July 2018

T. Matsuda
Affiliation:
Dept. of Earth Sciences, Okayama University, Okayama 700, Japan
K. Nagasawa
Affiliation:
Institute of Geosciences, Shizuoka University, Shizuoka 422, Japan
Y. Tsuzuki
Affiliation:
Dept. of Earth Sciences, Ehime University, Matsuyama 790, Japan
K. Henmi
Affiliation:
Dept. of Earth Sciences, Okayama University, Okayama 700, Japan

Abstract

XRD, DTA, IR, chemical and electron microscopic data are presented for three specimens of regularly interstratified 25 Å minerals from Roseki deposits in Japan. The layer charges of these dioctahedral mica-smectites originate mainly from tetrahedral Al-for-Si substitution. The non-expandable interlayers are occupied by relatively large amounts of Ca and K as well as Na. The expansion characteristics of the expandable interlayers are montmorillonitic in spite of the beidellitic composition of the 2:1 layers.

Resume

Resume

Trois échantillons d'un minéral phylliteux à interstratifications régulières (25 Å) et provenant des dépôts de Roseki (Japon) ont été étudiés par diffraction des rayons X, analyse thermique différentielle, spectroscopie infrarouge, analyse chimique et microscopie électronique. Les charges des feuillets de ces mica-smectites di-octaédriques sont dues essentiellement aux substitutions Si par Al en positions tétraédriques. Les espaces inter-feuillets non gonflables sont occupés par des quantités importantes de calcium et de potassium aussi bien que par du sodium. Les caractéristiques de gonflement des interfeuillets gonflables sont du type montmorillonite en dépit de la composition de type beidellitique de ces feuillets 2: 1.

Kurzreferat

Kurzreferat

Röntgenographische, Differential Thermoanalysen, IR-spektrometrische, chemische und elektronenoptische Daten werden für drei Arten von regelmäßig wechselgelagerten 25 Å Mineralen aus Roseki Lagerstätten in Japan angegeben. Die Schichtladung dieser dioktaedrischen Glimmer-Smectite hängt hauptsächlich von der tetraedrischen Substitution des Al gegen Si ab. Die nicht expandierbaren Zwischenschichten sind mit relativ großen Beträgen an Ca, K und ebenso Na besetzt. Die Aufweitungscharakteristiken der expandierbaren Zwischenschichten sind montmorillonitisch, trotz der beidellitischen Zusammensetzung der 2: 1 Schichten.

Resumen

Resumen

Se presentan datos de DRX, DTA, IR, microscopia electrónica y análisis químico de tres muestras de minerales interestratificados regulares de 25 Å de espaciado basal, procedentes de los depósitos de Roseki (Japón). La carga laminar de estos minerales dioctaédricos mica-esmectita procede principalmente de sustituciones de Si por Al en la capa tetraédrica. El espacio interlaminar, hinchable, está ocupado por cantidades relativamente grandes de Ca y K así como de Na. El tipo de hinchamiento es característico de la montmorillonita, a pesar de que la composición química de la lámina corresponde a una beidellita.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradley, W.F. (1950) The alternating layer sequence of rectorite. Am. Miner. 35, 590595.Google Scholar
Brindley, G.W. (1956) Allevardite, a swelling double-layer mica mineral. Am. Miner. 41, 91103.Google Scholar
Brindley, G.W. & Sandalaki, Z. (1963) Structure, composition and genesis of some long-spacing mica-like minerals. Am. Miner. 48, 138149.Google Scholar
Brown, G. & Weir, A.H. (1963) The identity of rectorite and allevardite. Proc. Int. Clay Conf. Stockholm 1, 2734.Google Scholar
Caillère, S. & Hénin, S. (1950) Sur un nouveau silicate phylliteux: la allevardite. C.R. Acad. Sci. Paris 230,668669.Google Scholar
Caillère, S., Matmeu-Sicaud, A. & Hénin, S. (1950) Nouvel essai d'identification du minéral de La Table près Allevard, l'allevardite. Bull. Soc. Franç. Miner. 73, 193201.Google Scholar
Cole, W.F. & Hosking, J.S. (1957) Clay mineral mixtures and interstratified minerals. Pp. 248274 in: The Differential Thermal Investigation of Clays (Mackenzie, R.C., editor), Mineralogical Society, London.Google Scholar
Farmer, V.C. & Russell, J.D. (1964) The infra-red spectra of layer silicates. Spectrochim. Acta 20, 11491173.Google Scholar
Harward, M.E., Carstea, D.D. & Sayegh, A.H. (1969) Properties of vermiculites and smectites: Expansion and collapse. Clays Clay Miner. 16, 437447.CrossRefGoogle Scholar
Henmi, K. (1966) Roseki deposits in Okayama and Hiroshima Prefectures and their constituent minerals (in Japanese): Taika-Zairyo 101, 918.Google Scholar
Kodama, H. (1966) The nature of the component layer of rectorite. Am. Miner. 51, 10351055.Google Scholar
Kodama, H., Shimoda, S. & Sudo, T. (1969) Hydrous mica complexes: Their structure and chemical composition. Proc. Int. Clay Conf. Tokyo 1, 185196.Google Scholar
Matsuda, T. (1977) Direct observation of regularly interstratified mica-montmorillonite by high resolution electron microscopy (in Japanese). J. Clay Sci. Soc. Japan 17, 6163.Google Scholar
Matsuda, T. & Nagasawa, K. (1977) Comparison of characteristics of expansible components between regularly interstratified mica-smectite and chlorite-smectite (in Japanese). J. Miner. Soc. Japan 13, Spec. Issue, 111118.Google Scholar
Nagasawa, K. & Tsuzuki, T. (1974) Expansion-collapse characteristics of interstratified chlorite-montmorillonite. Clay Sci. 4, 191198.Google Scholar
Numano, T. (1966) Chemical analysis of rocks and minerals by using ion exchange resin, 2(in Japanese). Rept. Earth Sci. Okayama Univ. 1, 145156.Google Scholar
Oinuma, K. & Hayashi, H. (1965) Infrared study of mixed-layer minerals. Am. Miner. 50, 12131227.Google Scholar
Radoslovich, E.W. (1960) The structure of muscovite, KAl2(Si3Al) O10(OH)2 . Acta Cryst. 13, 919932.Google Scholar
Shimoda, S. & Brydon, J.E. (1971) I. R. study of some interstratified mineral of mica and montmorillonite. Clays Clay Miner. 19, 6166.Google Scholar
Shimoda, S. & Sudo, T. (1960) An interstratified mixture of mica clay minerals.Am. Miner. 45, 10691077.Google Scholar
Shimoda, S., Sudo, T. & Oinuma, K. (1969) Differential thermal analysis curves of mica clay minerals. Proc. Int. Clay Conf. Tokyo 1, 197206.Google Scholar
Sudo, T., Hayashi, H. & Shimoda, S. (1962) Mineralogical problems of intermediate clay minerals. Clays Clay Miner. 9, 378392.CrossRefGoogle Scholar
Suquet, H., Calle, C. de la & Pezerat, H.(1975) Swelling and structural organization of saponite. Clays Clay Miner. 23, 19.Google Scholar
Takeshi, H. (1958) Kaolin minerals in ‘Roseki’ (in Japanese). J. Miner. Soc. Japan 3, 388405.Google Scholar
Takeuchi, Y. (1966) Structure of brittle micas. Clays Clay Miner. 13, 125.Google Scholar
Yamamoxo, T. (1965) Roseki-minerals in the western part of Japan (in Japanese). J. Miner. Soc. Japan 7, 209231.Google Scholar
Yoder, H.S. & Eugster, H.P. (1955) Synthetic and natural muscovites. Geochim. Cosmochim. Acta 8, 225280.CrossRefGoogle Scholar