Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T07:37:11.170Z Has data issue: false hasContentIssue false

The reductive dissolution of synthetic goethite and hematite in dithionite

Published online by Cambridge University Press:  09 July 2018

J. Torrent
Affiliation:
Departamento de Ciencias y Recursos Agricolas, Escuela Técnica Superior de Ingenieros Agrónomos, Apdo. 3048, 14080 Córdoba, Spain
U. Schwertmann
Affiliation:
Institut für Bodenkunde, Technische Universität München, 8050 Freising-Weihenstephan, Federal Republic of Germany
V. Barron
Affiliation:
Departamento de Ciencias y Recursos Agricolas, Escuela Técnica Superior de Ingenieros Agrónomos, Apdo. 3048, 14080 Córdoba, Spain

Abstract

The reductive dissolution by Na-dithionite of 28 synthetic goethites and 26 hematites having widely different crystal morphologies, specific surfaces and aluminium substitution levels has been investigated. For both minerals the initial dissolution rate per unit of surface area decreased with aluminium substitution. At similar aluminium substitution and specific surface, goethites and hematites showed similar dissolution rates. These results suggest that preferential, reductive dissolution of hematite in some natural environments, such as soils or sediments, might be due to the generally lower aluminium substitution of this mineral compared to goethite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borggaard, O.K. (1984) Influence of iron oxides on the non-specific anion (chloride) adsorption by soil. J. Soil Sci. 35, 7178.CrossRefGoogle Scholar
Carter, D.L., Heilmàn, M.D. & Gonzales, C.L. (1965) The ethylene glycol monoethyl ether (EGME) technique for determining soil-surface area. Soil Sci. 100, 409413.CrossRefGoogle Scholar
Fey, M. V. (1983) Hypothesis for the pedogenic yellowing of red soil materials. Tech. Commun. Dept. of Agr. and Fisheries, Republic of South Africa 18, 130136.Google Scholar
Fischer, W. & Schwertmann, U. (1975) The formation of hematite from amorphous iron (III)-hydroxide. Clays Clay Miner. 23, 3337.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by dithionite-citrate systems buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.CrossRefGoogle Scholar
Peña, F. & Torrent, J. (1984) Relationships between phosphate sorption and iron oxides in Alfisols from a river terrace sequence of Mediterranean Spain. Geoderma 33, 265282.Google Scholar
Schulze, D.G. & Schwertmann, U. (1984) The influence of aluminum on iron oxides: X. The properties of Al- substituted goethites. Clay Miner. 19, 521529.Google Scholar
Schulze, D.G. & Schwertmann, U, (1987) The influence of aluminum on iron oxides. XIII. Properties of goethites synthesized in 0·3 M KOH at 25°C Clays Clay Miner. (in press).CrossRefGoogle Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammonium-oxalat-Lösung. Z. Pflanzenernähr. Bodenk. 105, 194202.CrossRefGoogle Scholar
Schwertmann, U. (1985) The effect of pedogenic environments on iron oxide minerals. Pp. 171200 in: Advances in Soil Science 1, Springer-Verlag, New York.Google Scholar
Schwertmann, U. (1987) Some properties of soil and synthetic iron oxides. In: Iron in Soils and Clay Minerals, Nato Advanced Institute (Stucki, J. W., Goodman, B. A. & Schwertmann, U., editors). Reidel, Bad Windsheim, Germany.Google Scholar
Schwertmann, U., Cambier, Ph. & Murad, E. (1985) Properties of goethites of varying crystallinity. Clays Clay Miner. 33, 369378.Google Scholar
Schwertmann, U. & Fischer, W. (1973) Natural ‘amorphous’ ferric hydroxide. Geoderma 10, 237247.Google Scholar
Schwertmann, U. & Kämpf, N. (1985) Properties of goethite and hematite in kaolinitic soils of Southern and Central Brazil. Soil Sci. 139, 344350.Google Scholar
Tardy, Y. & Nahon, D. (1985) Geochemistry of laterites, stability of Al-goethite, Al-hematite, and Fe3+- kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion formation. Am. J. Sci. 285, 865903.CrossRefGoogle Scholar
Torrent, J. & Gomez Martin, F. (1985) Incipient podzolization processes in Humic Acrisols of Southern Spain. J. Soil Sci. 36, 389399.Google Scholar
Torrent, J., Schwertmann, U. & Schulze, D.G. (1980) Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma 23, 191208.Google Scholar
Trolard, F. & Tardy, Y. (1987) The stabilities of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as function of water activity, temperature and particle size. Geochim. Cosmochim. Acta (in press).Google Scholar
Warren, I.H., Bath, M.D., Prosser, A.P. & Armstrong, J.T. (1969) Anisotropic dissolution of hematite. Trans. Inst. Mining. Met. C78, 2127.Google Scholar
Yapp, C.J. (1983) Effects of AlOOH-FeOOH solid solution on goethite-hematite equilibrium. Clays Clay Miner. 31, 239240.Google Scholar